Volume 37 Issue 5
Jul.  2017
Turn off MathJax
Article Contents
Li Yueqiang, Yi Na, Xi Feng. Assessment on single degree of freedom modelin steel column analysis of anti-detonation[J]. Explosion And Shock Waves, 2017, 37(5): 957-963. doi: 10.11883/1001-1455(2017)05-0957-07
Citation: Li Yueqiang, Yi Na, Xi Feng. Assessment on single degree of freedom modelin steel column analysis of anti-detonation[J]. Explosion And Shock Waves, 2017, 37(5): 957-963. doi: 10.11883/1001-1455(2017)05-0957-07

Assessment on single degree of freedom modelin steel column analysis of anti-detonation

doi: 10.11883/1001-1455(2017)05-0957-07
  • Received Date: 2016-01-11
  • Rev Recd Date: 2016-05-28
  • Publish Date: 2017-09-25
  • For the evaluation of the applicability of the single degree of freedom (SDOF) model in the structural antiknock design, the dynamic response of the simply supported steel column under explosion load was simulated using both the SDOF model and the ANSYS/LS-DYNA in this paper. By the comparison of the two calculation results, the scope of application of the SDOF model was analyzed according to the finite element simulation. The results show that the displacements calculated using the SDOF model can be divided into three different phases including the finite deformation, in which the SDOF model agrees well with the DYNA simulation, the critical deformation, and the buckling failure deformation, according to the amplitude size in the free vibration. The ratio of the cross section's depth to its width and that of the flange's width to its thickness have significant effect on the dynamic failure forms of the steel column, namely the bigger the ratio of the depth to the width and the smaller the ratio of the width to the thickness, the more prone it is for the buckling to suffer out-of-plane bending and twisting. In the SDOF model, it is feasible to calculate the strain and the strain rate in the plastic deformation phase by assuming the plastic hinge distribution length and the stress-magnified coefficient in the Cowper-Symonds constitutive relation by using the time-dependent strain rate.
  • loading
  • [1]
    中华人民共和国住房和城乡建设部.GB 50009-2012建筑结构荷载规范[S].北京: 中国建筑工业出版社, 2012. https://www.hanspub.org/reference/ReferencePapers.aspx?ReferenceID=157206
    [2]
    Nassr A A, Razaqpur A G. Single and multi degree of freedom analysis of steel beams under blast loading[J]. Nuclear Engineering and Design, 2012, 242:63-77. doi: 10.1016/j.nucengdes.2011.10.020
    [3]
    LS-DYNA keyword user's manual: Version 971[Z]. Livermore, California: Livermore Software Technology Corporation, 2007.
    [4]
    Nassr A A, Razaqpur A G. Strength and stability of steel beam columns under blast load[J].International Journal of Impact Engineering, 2013, 55(5):34-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=258376df12a28550b207823b7b9302fb
    [5]
    席丰, 张云.脉冲载荷作用下钢梁动力响应及反常行为的应变率效应[J].爆炸与冲击, 2012, 32(1):34-42. doi: 10.3969/j.issn.1001-1455.2012.01.006

    Xi Feng, Zhang Yun. The effects of strain rate on the dynamic response and abnormal Behavior of steel beams under pulse loading[J]. Explosion and Shock Waves, 2012, 32(1):34-42. doi: 10.3969/j.issn.1001-1455.2012.01.006
    [6]
    刘锋, 席丰.子弹撞击作用下固支浅圆拱的弹塑性动力响应[J].爆炸与冲击, 2005, 25(4):361-367. doi: 10.3321/j.issn:1001-1455.2005.04.013

    Liu Feng, Xi Feng. Elastic-plastic dynamic response of a fully clamped shallow arch subjected to projectile impact[J]. Explosion and Shock Waves, 2005, 25(4):361-367. doi: 10.3321/j.issn:1001-1455.2005.04.013
    [7]
    谭浩强.C程序设计(第四版)[M].北京:清华大学出版社, 2010.
    [8]
    Nassr A A, Razaqpur A G. Dynamic response of steel columns subjected to blast loading[J]. Journal of Structural Engineering, 2014, 140(7):165-180. http://d.old.wanfangdata.com.cn/Periodical/bpqc201804005
    [9]
    Nassr A A, Razaqpur A G. Experimental performance of steel beams under blast loading[J]. Journal of Performance of Constructed Facilities, 2012, 26(26):600-619. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbc670001ec88ef3091f049baebd1566
    [10]
    陈骥.钢结构稳定理论与设计(第六版)[M].北京:科学出版社, 2014.
    [11]
    余同希, 斯壮W J.塑性结构的动力学模型[M].北京:北京大学出版社, 2002.
    [12]
    陈绍蕃, 顾强.钢结构(第二版)[M].北京:中国建筑工业出版社, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (4269) PDF downloads(294) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return