Volume 35 Issue 3
Jun.  2015
Turn off MathJax
Article Contents
Xu Shuang, Zhao Ning, Wang Chun-wu, Wang Dong-hong. Interface treating methods for the gas-water multi-phase flows[J]. Explosion And Shock Waves, 2015, 35(3): 326-334. doi: 10.11883/1001-1455-(2015)03-0326-09
Citation: Xu Shuang, Zhao Ning, Wang Chun-wu, Wang Dong-hong. Interface treating methods for the gas-water multi-phase flows[J]. Explosion And Shock Waves, 2015, 35(3): 326-334. doi: 10.11883/1001-1455-(2015)03-0326-09

Interface treating methods for the gas-water multi-phase flows

doi: 10.11883/1001-1455-(2015)03-0326-09
  • Received Date: 2013-11-14
  • Rev Recd Date: 2014-02-28
  • Publish Date: 2015-05-25
  • A new interface treating method is presented for the compressible-incompressible gas-water multi-phase flow.The Riemann problem is constructed at the compressible gas-water interface, and then solved according to the hypothesis that the sound speed tends to infinity in the water.The solution of Riemann problem provides the fluid states for compressible gas and incompressible water at the interface.Those states can then be used to define the interface boundary condition by coupling the ghost fluid method.The level set method is employed to track the interface.The numerical examples of one-dimension case are given in this paper, furthermore, several comparisons are made with other results to verify the algorithm.Numerical results show that the provided algorithm can capture the discontinuities accurately, which demonstrates the robustness and efficiency.
  • loading
  • [1]
    Caiden R, Fedkiw R P, Anderson C. A numerical method for two-phase flow consisting of separate compressible and incompressible regionsg[J]. Journal of Computational Physics, 2001, 166(1): 1-27.
    [2]
    Fedkiw R P, Aslam T, Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows: The ghost fluid method[J]. Journal of Computational Physics, 1999, 152(2): 457-492.
    [3]
    Liu T G, Khoo B C, Yeo K S. Ghost fluid method for strong shock impacting on material interface[J]. Journal of Computational Physics, 2003, 190(2): 651-681.
    [4]
    Liu T G, Khoo B C, Wang C W. The ghost fluid method for gas-water simulation[J]. Journal of Computational Physics, 2005, 204(1): 193-221.
    [5]
    Wang C W, Liu T G, Khoo B C. A real ghost fluid method for the simulation of multimedium compressible flow[J]. SIAM Journal on Scientific Computing, 2006, 28(1): 278-302.
    [6]
    王春武, 赵宁.基于求解Riemann问题的界面处理方法[J].计算物理, 2006, 22(4): 306-310.

    Wang Chun-wu, Zhao Ning. An interface treating method based on Riemann problems[J]. Chinese Journal of Computational Physics, 2006, 22(4): 306-310.
    [7]
    Agemi R. The incompressible limit of compressible fluid motion in a bounded domain[C]∥Proceedings of the Japan Academy Series A: Mathematical Sciences. 1981.
    [8]
    Steve S. The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit[J]. Communications in Mathematical Physics, 1986, 104(1): 49-75.
    [9]
    Asano K. On the incompressible limit of the compressible Euler equation[J]. Japan Journal of Applied Mathematics, 1987, 4(3): 455-488.
    [10]
    Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. http://www.sciencedirect.com/science/article/pii/S0021999196901308
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (4234) PDF downloads(692) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return