Volume 38 Issue 1
Nov.  2017
Turn off MathJax
Article Contents
DENG Li, MA Hu, WU Xiaosong, ZHOU Changsheng. Comparison of different methods for source terms in detonation simulation[J]. Explosion And Shock Waves, 2018, 38(1): 155-163. doi: 10.11883/bzycj-2016-0150
Citation: DENG Li, MA Hu, WU Xiaosong, ZHOU Changsheng. Comparison of different methods for source terms in detonation simulation[J]. Explosion And Shock Waves, 2018, 38(1): 155-163. doi: 10.11883/bzycj-2016-0150

Comparison of different methods for source terms in detonation simulation

doi: 10.11883/bzycj-2016-0150
  • Received Date: 2016-05-26
  • Rev Recd Date: 2016-09-18
  • Publish Date: 2018-01-25
  • In this study, to solve the stiff source terms resulting from chemical reactions in detonation simulation, we examined the one step method, the asymptotic approach, the α quasi steady state method (αQSS) and the point implicit and compared their performances in coping with the stiff source term problems. We studied the limitations of each method using stability analysis, and investigated their relationships and capabilities in adapting to the changes in chemical reactions, with the shock-induced combustion simulated to compare their efficiencies. The results indicate that the one step method requires at least two times of the smallest time scale while the other three methods have no constraint on the time step. The αQSS can adjust the value of α and the time step with different reaction characteristics, and the one step method and the asymptotic method are the special cases of the αQSS with a constant α. An implicit approach has a better performance in mathematically solving the stiff equations but its low computation efficiency from the inversion of the matrix is sometimes unacceptable. The αQSS method can only consume a half of the CPU time that with the point implicit in shock-induced combustion simulation. In general, the αQSS is a good choice for dealing with stiff source term problems.
  • loading
  • [1]
    刘君, 周松柏, 徐春光.超声速流动中燃烧现象的数值模拟方法及应用[M].长沙:国防科技大学出版社, 2008:76-79.
    [2]
    BUSSING T R A. A finite volume method for the Navier-Stokes equations with finite rate chemistry[D]. Cambridge: Massachusetts Institute of Technology, 1985. http: //ci. nii. ac. jp/ncid/BB03917781
    [3]
    BUSSING T R A, Murman E M. Finite-volume method for the calculation of compressible chemically reacting flows[J]. AIAA Journal, 1988, 26(9):1070-1078. doi: 10.2514/3.10013
    [4]
    ZHONG X. Additive semi-implicit Runge-Kutta methods for computing high-speed non-equilibrium reactive flows[J]. Journal of Computational Physics, 1996, 128(1):19-31. doi: 10.1006/jcph.1996.0193
    [5]
    ROSENBROCK H H. Some general implicit processes for the numerical solution of differential equations[J]. The Computer Journal, 1963, 5(4):329-330. doi: 10.1093/comjnl/5.4.329
    [6]
    LEVEQUE R J, YEE H C. A study of numerical methods for hyperbolic conservation laws with stiff source terms[J]. Journal of Computational Physics, 1990, 86(1):187-210. doi: 10.1016/0021-9991(90)90097-K
    [7]
    ORAN E S, BORIS J P. Numerical simulation of reactive flow[M]. Cambridge: Cambridge University Press, 2005:114-158.
    [8]
    YOUNG T R, BORIS J P. A numerical technique for solving stiff ordinary differential equations associated with the chemical kinetics of reactive-flow problems[J]. The Journal of Physical Chemistry, 1977, 81(25):2424-2427. doi: 10.1021/j100540a018
    [9]
    CHIANG T, HOFFMANN K. Determination of computational time step for chemically reacting flows[C]//Proceedings of AIAA 20th Fluid Dynamics, Plasma Dynamics and Laser Conference. Buffalo, New York, USA, 1989.
    [10]
    MOTT D R, ORAN E S, VAN L B. A quasi-steady-state solver for the stiff ordinary differential equations of reaction kinetics[J]. bJournal of Computational Physics, 2000, 164(2):407-428. doi: 10.1006/jcph.2000.6605
    [11]
    MOTT D R, ORAN E S. CHEMEQ2: A solver for the stiff ordinary differential equations of chemical kinetics[R]. Naval Research Lab, Washington D C, 2001.
    [12]
    刘瑜. 化学非平衡流的计算方法研究及其在激波诱导燃烧现象模拟中的应用[D]. 长沙: 国防科技大学, 2008. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2009213254. htm

    LIU Yu. Investigations into numerical methods of chemical non-equilibrium flow and its application to simulation of shock-induced combustion phenomenon[D]. Changsha: National University of Defense Technology, 2008. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2009213254. htm
    [13]
    刘君, 张涵信, 高树椿.一种新型的计算化学非平衡流动的解耦方法[J].国防科技大学学报, 2000, 22(5):19-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb200005005

    LIU Jun, ZHANG Hanxin, GAO Shuchun. A new uncoupled method for numerical simulation of non-equilibrium flow[J]. Journal of National University of Defense Technology, 2000, 22(5):19-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb200005005
    [14]
    刘世杰, 林志勇, 孙明波, 等.采用不同化学反应源项处理方法的胞格爆轰数值研究[J].国防科技大学学报, 2010, 32(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb201005001

    LIU Shijie, LIN Zhiyong, SUN Mingbo, et al. Numerical simulation of cellular detonation using different chemical reaction source term methods[J]. Journal of National University of Defense Technology, 2010, 32(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb201005001
    [15]
    JACHIMOWSKI C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion[R]. NASA TechnicaI Paper 2791, 1988.
    [16]
    潘沙. 高超声速气动热数值模拟方法及大规模并行计算研究[D]. 长沙: 国防科技大学, 2010. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2010271147. htm

    PAN Sha. Hypersonic aerothermal numerical simulation method and massive parallel computation research[D]. Changsha: National University of Defense Technology, 2010. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2010271147. htm
    [17]
    TORO E F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction[M]. Springer Science & Business Media, 2009: 531-542.
    [18]
    LEHR H F. Experiments on shock-induced combustion[J]. Astronautica Acta, 1972, 17:589-597. https://www.researchgate.net/publication/279938305_Experiments_on_shock-induced_combustion
    [19]
    MCVEY J B, TOONG T Y. Mechanism of instabilities of exothermic hypersonic blunt-body flows[J]. Combustion Science and Technology, 1971, 3(2):63-76. doi: 10.1080/00102207108952273
    [20]
    CHOI J Y, JEUNG I S, YOON Y. Computational fluid dynamics algorithms for unsteady shock-induced combustion: Part 1: Validation[J]. AIAA Journal, 2000, 38(7):1179-1187. doi: 10.2514/2.1112
    [21]
    刘世杰, 孙明波, 林志勇, 等.钝头体激波诱导振荡燃烧现象的数值模拟[J].力学学报, 2010, 42(4):597-606. doi: 10.6052/0459-1879-2010-4-lxxb2010-086

    LIU Shijie J, SUN Mingbo, LIN Zhiyong, et al. Numerical research on blunt body shock-induced oscillation combustion phenomenon[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4):597-606. doi: 10.6052/0459-1879-2010-4-lxxb2010-086
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (5240) PDF downloads(175) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return