HE Yuan, HE Yong, WANG Chuanting, PAN Xuchao, JIAO Junjie, GUO Lei, YANG Xiangli, LI Quan. Theoretical calculation of shock compression properties of MESMs with electronic thermal motion effect[J]. Explosion And Shock Waves, 2018, 38(1): 217-223. doi: 10.11883/bzycj-2017-0034
Citation:
HE Yuan, HE Yong, WANG Chuanting, PAN Xuchao, JIAO Junjie, GUO Lei, YANG Xiangli, LI Quan. Theoretical calculation of shock compression properties of MESMs with electronic thermal motion effect[J]. Explosion And Shock Waves, 2018, 38(1): 217-223. doi: 10.11883/bzycj-2017-0034
HE Yuan, HE Yong, WANG Chuanting, PAN Xuchao, JIAO Junjie, GUO Lei, YANG Xiangli, LI Quan. Theoretical calculation of shock compression properties of MESMs with electronic thermal motion effect[J]. Explosion And Shock Waves, 2018, 38(1): 217-223. doi: 10.11883/bzycj-2017-0034
Citation:
HE Yuan, HE Yong, WANG Chuanting, PAN Xuchao, JIAO Junjie, GUO Lei, YANG Xiangli, LI Quan. Theoretical calculation of shock compression properties of MESMs with electronic thermal motion effect[J]. Explosion And Shock Waves, 2018, 38(1): 217-223. doi: 10.11883/bzycj-2017-0034
In this work, based on the Thomas-Fermi statistical model, we modified the calculation method of the Wu-Jing parameters R and investigated the effect of the electronic thermal motion on such parameters as the particle number, the internal energy, and the pressure, inside the metallic crystal structure so as to truly describe the shock compression properties of porous metal materials. A new equation of state was developed for porous materials in which the contribution of the electronic phases was considered explicitly under the condition of different porosity. The relationship between pressure and particle velocity, shock wave velocity and particle velocity was obtained for typical MESMs, for instance different components of W/Cu alloy (dense) and different dense degrees of Al/Ni alloy. Compared with existing models, the equation of state established in this paper is better fitted with the experimental results. The results show that this model can be used to predict the shock compression properties of metal materials under unreacted conditions. The us-up relationship of porous materials does not exhibit an approximate linear relationship as solid materials, due to the shock compression characteristics that are divided into two distinct phases before and after compaction. The shock compression characteristics of multi-functional energetic structure materials are obviously affected by the porosity and material ratio.
JORDAN J L, DICK R D, FERRANTI L, et al. Equation of state of aluminum-iron oxide (Fe2O3) epoxy composite: Modeling and experiment[C]//Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condense Matter. Baltimore, Maryland, United States, 2005. http://meetings.aps.org/link/BAPS.2005.SHOCK.T3.1
[3]
JORDAN J L, HERBOLD E B, SUTHERLAND G, et al. Shock equation of state of multi-constituent epoxy-metal particulate composites[J]. Journal of Applied Physics, 2011, 109(1):013531.DOI: 10.1063/1.3531579.
[4]
EAKINS D E, THADHANI N N. Mechanistic aspects of shock-induced reactions in Ni+Al powder mixtures[C]//Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Waikoloa, Hawaii, United states, 2007. http://meetings.aps.org/link/BAPS.2007.SHOCK.C6.4
[5]
XU X, THADHANI N N. Investigation of shock-induced reaction behavior of as-blended and ball-milled Ni plus Ti powder mixtures using time-resolved stress measurements[J]. Journal of Applied Physics, 2004, 96(4):2000-2009. doi: 10.1063/1.1773380
ZHANG Xianfeng, ZHAO Xiaoning, QIAO Liang. Theory analysis on shock-induced chemical reaction of reactive metal[J]. Explosion and Shock Waves, 2010, 30(2):145-151. doi: 10.11883/1001-1455(2010)02-0145-07
WU Qiang, JING Fuqian. Thermodynamic equation of state and application to Hugoniot predictions for porous materials[J]. Journal of Applied Physics, 1996, 80(8):4343-4351.DOI: 10.1063/1.363391.
[11]
CARROLL M M, HOLT A C. Static and dynamic pore-collapse relations for ductile porous materials[J]. Journal of Applied Physics, 1972, 43(4):1626-1636. doi: 10.1063/1.1661372
[12]
ZEL'DOVICH Y B, RAIZER Y P, HAYES W D, et al. Physics of shock waves and high-temperature hydrodynamic phenomena[M]. New York: Dover Publications, 2002.
HE Yuan, HE Yong, WANG Chuanting, PAN Xuchao, JIAO Junjie, GUO Lei, YANG Xiangli, LI Quan. Theoretical calculation of shock compression properties of MESMs with electronic thermal motion effect[J]. Explosion And Shock Waves, 2018, 38(1): 217-223. doi: 10.11883/bzycj-2017-0034
HE Yuan, HE Yong, WANG Chuanting, PAN Xuchao, JIAO Junjie, GUO Lei, YANG Xiangli, LI Quan. Theoretical calculation of shock compression properties of MESMs with electronic thermal motion effect[J]. Explosion And Shock Waves, 2018, 38(1): 217-223. doi: 10.11883/bzycj-2017-0034