Volume 38 Issue 6
Sep.  2018
Turn off MathJax
Article Contents
MA Liying, LI Xiangdong, ZHOU Lanwei, ZHANG Gaofeng. Characteristics of draging period cavity formation in liquid filling container by fragment impacting[J]. Explosion And Shock Waves, 2018, 38(6): 1412-1418. doi: 10.11883/bzycj-2017-0188
Citation: MA Liying, LI Xiangdong, ZHOU Lanwei, ZHANG Gaofeng. Characteristics of draging period cavity formation in liquid filling container by fragment impacting[J]. Explosion And Shock Waves, 2018, 38(6): 1412-1418. doi: 10.11883/bzycj-2017-0188

Characteristics of draging period cavity formation in liquid filling container by fragment impacting

doi: 10.11883/bzycj-2017-0188
  • Received Date: 2017-05-31
  • Rev Recd Date: 2017-09-21
  • Publish Date: 2018-11-25
  • To study the characteristics of the cavities formed by the fragment impacting liquid filling container, the forming process of the cavities in the liquid-filled containers was studied through numerical and experimental studies. In addition, the effects of the impacting velocity and the liquid medium of the cavity were analyzed. The results show that the cavity formed in the liquid is approximate a cone, the maximum diameter, length and length-diameter ratio of the cavity increase with fragment moving. The ratio of length to diameter eventually approches a certain value, and the value is approximate 3.9. The maximum diameter of the cavity increases with the increase of the fragment impact velocity. The maximum diameter and the length-diameter ratio of the cavity in the diesel medium are similar to those in the water medium, and the length-diameter ratio of the cavity approches 4.25.The maximum diameter and the length-diameter ratio in the diesel medium are larger than those in the water medium.
  • loading
  • [1]
    MOUSSA N A, WHALE M D, GROZMANN D E, et al. Potential for fuel tank fire and hydrodynamic ram from uncontained aircraft engine debris[R]. Hughes Technical Center, US, 1997.
    [2]
    KWON Y W, YANG K, ADAMS C. Modeling and simulation of high-velocity projectile impact on storage tank[J]. Journal of Pressure Vessel Technology, 2016, 138(4):041303. doi: 10.1115/1.4032447
    [3]
    DISIMILE P J, DAVIS J, TOY N. Mitigation of shock waves within a liquid filled tank[J]. International Journal of Impact Engineering, 2011, 38(2):61-72. http://www.sciencedirect.com/science/article/pii/S0734743X10001521
    [4]
    SHEPARD T, ABRAHAM J, SCHWALBACH D, et al. Velocity and density effect on impact force during water entry of sphere[J]. Journal of Remote Sensing & GIS, 2014, 3(3):1000129.
    [5]
    TRUSCOTT T T, TECHET A H. A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres[J]. Physics of Fluids, 2009, 21(12):121703. doi: 10.1063/1.3272264
    [6]
    LECYSYN N, BONY-DANDRIEUX A, APRIN L, et al. Experimental study of hydraulic ram effects on a liquid storage tank:analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1):635-643. http://www.ncbi.nlm.nih.gov/pubmed/20189299
    [7]
    LECYSYN N, DANDRIEUX A, HEYMES F, et al. Ballistic impact on an industrial tank:study and modeling of consequences[J]. Journal of Hazardous Materials, 2009, 172(2):587-594. http://www.sciencedirect.com/science/article/pii/S0304389409011509
    [8]
    ARISTOFF J M, TRUSCOTT T T, TECHET A H, et al. The water entry of decelerating spheres[J]. Physics of Fluids, 2010, 22(3):032102. doi: 10.1063/1.3309454
    [9]
    VARAS D, LÍPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36(1):81-91. doi: 10.1016/j.ijimpeng.2008.04.006
    [10]
    VARAS D, LOPEZ-PUENTE J, ZAERA R. Numerical analysis of the hydrodynamic ram phenomenon in aircraft fuel tanks[J]. AIAA Journal, 2012, 50(7):1621-1630. doi: 10.2514/1.J051613
    [11]
    蒋运华, 徐胜利, 周杰.运动体小扰动下入水空泡试验研究[J].弹道学报, 2016, 28(1):81-86. doi: 10.3969/j.issn.1004-499X.2016.01.015

    JIANG Yunhua, XU Shengli, ZHOU Jie. Experimental study on water entry cavity for vehicle with small perturbation[J]. Journal of Ballistics, 2016, 28(1):81-86. doi: 10.3969/j.issn.1004-499X.2016.01.015
    [12]
    张伟, 郭子涛, 肖新科, 等.弹体高速入水特性实验研究[J].爆炸与冲击, 2011, 31(6):579-584. http://www.bzycj.cn/CN/abstract/abstract8740.shtml

    ZHANG Wei, GUO Zitao, XIAO Xinke, et al. Experiment investigation on behaviors of projectile high-speed water entry[J]. Explosion and Shock Waves, 2011, 31(6):579-584. http://www.bzycj.cn/CN/abstract/abstract8740.shtml
    [13]
    郭子涛.弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D].哈尔滨: 哈尔滨工业大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D241209
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (4689) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return