• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Volume 39 Issue 1
Oct.  2018
Turn off MathJax
Article Contents
WANG Peng, ZHU Changfeng, ZHENG Zhijun, YU Jilin. Dynamic stress-strain states of cellular materials and a uniformly approximated relation[J]. Explosion And Shock Waves, 2019, 39(1): 013102. doi: 10.11883/bzycj-2017-0280
Citation: WANG Peng, ZHU Changfeng, ZHENG Zhijun, YU Jilin. Dynamic stress-strain states of cellular materials and a uniformly approximated relation[J]. Explosion And Shock Waves, 2019, 39(1): 013102. doi: 10.11883/bzycj-2017-0280

Dynamic stress-strain states of cellular materials and a uniformly approximated relation

doi: 10.11883/bzycj-2017-0280
  • Received Date: 2017-08-09
  • Rev Recd Date: 2018-03-06
  • Publish Date: 2019-01-05
  • Cellular material under high-speed impact is deformed in a mode of layer-wise propagation of crushing bands, which can be characterized by the plastic shock models. In this paper, we obtained the one-dimensional stress distribution of a random honeycomb under constant-velocity compression using the cross-sectional stress calculation method, analyzed the shockwave propagation, and examined the relation between the shockwave velocity and the impact velocity obtained by different methods under high-velocity impact. The results show that the shockwave speed is overestimated by the R-PP-L (rate-independent, rigid-perfect plastic-locking) model, but the shockwave speeds obtained by the R-PH (rate-independent, rigid-plastic hardening) model and the one-dimensional shock theory are close to that of finite element simulation. The relation between the shockwave velocity and the impact velocity tends to be linear at high impact velocities, and the shockwave speed reduces to a constant with the decrease of the impact velocity. In light of these characteristics and based on the plastic shockwave model, we developed a uniformly approximated model is developed to characterize the relation between the shockwave velocity and the impact velocity and the dynamic stress-strain relation of cellular material.
  • loading
  • [1]
    REID S R, BELL W W, BARR R A. Structural plastic shock model for one-dimensional ring systems[J]. International Journal of Impact Engineering, 1983, 1(2):175-191.DOI: 10.1016/0734-743X(83)90005-2.
    [2]
    REID S R, PENG C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6):531-570. DOI: 10.1016/S0734-743X(97)00016-X.
    [3]
    ZHENG Z J, YU J L, LI J R. Dynamic crushing of 2D cellular structures:A finite element study[J]. International Journal of Impact Engineering, 2005, 32(1):650-664. DOI: 10.1016/j.ijimpeng.2005.05.007.
    [4]
    LIU Y D, YU J L, ZHENG Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22):3988-3998. DOI: 10.1016/j.ijsolstr.2009.07.024.
    [5]
    张新春, 刘颖, 章梓茂.组合蜂窝材料面内冲击性能的研究[J].工程力学, 2009, 26(6):220-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200900938825

    ZHANG Xinchun, LIU Ying, ZHANG Zimao. Research on dynamic properties of suppercell honeycomb structures under in-plane impact loading[J]. Engineering Mechanics, 2009, 26(6):220-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200900938825
    [6]
    胡玲玲, 蒋玲.胞孔构型对金属蜂窝动态力学性能的影响机理[J].爆炸与冲击, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.

    HU Lingling, JIANG Ling. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs[J]. Explosion and Shock Waves, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.
    [7]
    ZOU Z, REID S R, TAN P J, et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009, 36(1):165-176. DOI: 10.1016/j.ijimpeng.2007.11.008.
    [8]
    LIAO S F, ZHENG Z J, YU J L. Dynamic crushing of 2D cellular structures:Local strain field and shock wave velocity[J]. International Journal of Impact Engineering, 2013, 57(1):7-16. DOI: 10.1016/j.ijimpeng.2013.01.008.
    [9]
    TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams. Part Ⅱ:"Shock"theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10):2206-2230. DOI: 10.1016/j.jmps.2005.05.003.
    [10]
    TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams. Part Ⅰ:Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10):2174-2205. DOI: 10.1016/j.jmps.2005.05.007.
    [11]
    ZHENG Z J, YU J L, WANG C F, et al. Dynamic crushing of cellular materials:A unified framework of plastic shock wave models[J]. International Journal of Impact Engineering, 2013, 53(1):29-43. DOI: 10.1016/j.ijimpeng.2012.06.012.
    [12]
    王长峰, 郑志军, 虞吉林.泡沫杆撞击刚性壁的动态压溃模型[J].爆炸与冲击, 2013, 33(6):587-593. DOI: 10.3969/j.issn.1001-1455.2013.06.005.

    WANG Changfeng, ZHENG Zhijun, YU Jilin. Dynamic crushing models for a foam rod striking a rigid wall[J]. Explosion and Shock Waves, 2013, 33(6):587-593. DOI: 10.3969/j.issn.1001-1455.2013.06.005.
    [13]
    ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model[J]. Journal of the Mechanics and Physics of Solids, 2014, 72:93-114. DOI: 10.1016/j.jmps.2014.07.013.
    [14]
    BARNES A T, RAVI-CHANDA K, KYRIAKIDES S, et al. Dynamic crushing of aluminum foams:Part Ⅰ:Experiments[J]. International Journal of Solids and Structures, 2014, 51(9):1631-1645. DOI: 10.1016/j.ijsolstr.2013.11.019.
    [15]
    SUN Y L, LI Q M, MCDONALD S A, et al. Determination of the constitutive relation and critical condition for the shock compression of cellular solids[J]. Mechanics of Materials, 2016, 99:26-36. DOI: 10.1016/j.mechmat.2016.04.004.
    [16]
    WANG P, WANG X K, ZHENG Z J, et al. Stress distribution in graded cellular materials under dynamic compression[J]. Latin American Journal of Solids and Structures, 2017, 14(7):1251-1272. DOI: 10.1016/j.ijimpeng.2017.10.006.
    [17]
    WANG L L. Foundations of stress waves[M]. Amsterdam:Elsevier Science Ltd., 2007. DOI: 10.1002/prep.200790014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (5735) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return