Volume 39 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
REN Jibin, WANG Bin, WANG Zhen, LIU Jun, SUO Tao, LI Yulong. Design and experimental verification of a wing leading edge structure[J]. Explosion And Shock Waves, 2019, 39(2): 025101. doi: 10.11883/bzycj-2017-0407
Citation: REN Jibin, WANG Bin, WANG Zhen, LIU Jun, SUO Tao, LI Yulong. Design and experimental verification of a wing leading edge structure[J]. Explosion And Shock Waves, 2019, 39(2): 025101. doi: 10.11883/bzycj-2017-0407

Design and experimental verification of a wing leading edge structure

doi: 10.11883/bzycj-2017-0407
  • Received Date: 2017-11-10
  • Rev Recd Date: 2018-03-27
  • Publish Date: 2019-02-05
  • In order to improve the anti-bird strike performance of a wing leading edge to meet the airworthiness requirements, the simulation-test-simulation methodology was adopted for the optimization of the leading edge. Firstly, the anti-bird strike responses of two kinds of the new leading edges, with the triangular plate structure and the front wall structure, respectively, were investigated via finite element simulation. The simulation results show the anti-bird strike performance of the leading edge with the front wall structure is better than those of the leading edges with the original structure and the triangular plate structure. During the bird strike process, the front wall structure can utilize the damaged skin's deformation to absorb energy, thus leading to the improvement of the anti-bird strike performance of the leading edge. The experiment was then carried out to verify not only the accuracy of the numerical simulation method but also the ability of the front wall structure against bird strike. Then, the validated model was used to analyze the influence of the leading edge structural parameters. With the weight reduction of 30%, the optimized wing leading edge structure with the front wall achieved a good performance of anti-bird strike.
  • loading
  • [1]
    DOLBEER R A, WRIGHT S E, WELLER J, et al. Wildlife strike to civil aircraft in the United States 1990-2008: FAA National Wildlife Strike Database Serial Report No.15[R]. Washington: FAA, 2009.
    [2]
    李玉龙, 石霄鹏.民用飞机鸟撞研究现状[J].航空学报, 2012, 33(2):189-198. DOI:CNKI:11-1929/V. 20111031.1057.005.

    LI Yulong, SHI Xiaopeng. Investigation of the present status of research on bird impacting on commercial airplanes[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):189-198. DOI: CNKI:11-1929/V.20111031.1057.005.
    [3]
    朱书华.鸟撞飞机风挡动响应分析与仿真试验平台研究[D].南京: 南京航空航天大学, 2009.
    [4]
    ZHU S H, TONG M B, WANG Y Q. Experiment and numerical simulation of a full-scale aircraft windshield subjected to bird impact: AIAA-2009-2575[R]. 2009.
    [5]
    SMOJVER I, IVANCEYIC D. Numerical simulation of bird strike damage prediction in airplane flap structure[J]. Composite Structure, 2010, 92(9):2016-2026. DOI: 10.1016/j.compstruct.2009.12.006.
    [6]
    HASSEN A G, GIRADET Y, OLOYSSON L, et al. Numerical model for bird strike of aluminum foam-based sandwich panels[J]. International Journal of Impact Engineering, 2006, 32(7):1127-1144. DOI: 10.1016/j.ijimpeng.2004.09.004.
    [7]
    AUDIC S, BERTHILLIER M, BONINI J, et al. Prediction of bird impact in hollow fan blades: AIAA-2000-3201[R]. 2000.
    [8]
    GEORGIADIS S, GUNNION A J, THOMSON R S, et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge[J]. Composite Structures, 2008, 86(1/2/3):258-268. DOI: 10.1016/j.compstruct.2008.03.025.
    [9]
    赵楠, 薛璞, 李玉龙.鸟体撞击蜂窝夹层板的动力学相应分析研究[J].兵工学报, 2010, 32(1):184-189. http://d.wanfangdata.com.cn/Conference_7151829.aspx

    ZHAO Nan, XUE Pu, LI Yulong. Study on dynamic response of honeycomb sandwich panels subjected to bird strike[J]. Acta Armanmentrarii, 2010, 32(1):184-189. http://d.wanfangdata.com.cn/Conference_7151829.aspx
    [10]
    陈园方, 李玉龙, 刘军, 等.典型前缘结构抗鸟撞性能改进研究[J].航空学报, 2010, 31(9):1781-1787. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009012

    CHEN Yuanfang, LI Yulong, LIU Jun, et al. Study of bird strike on an improved leading edge structure[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1781-1787. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009012
    [11]
    张永康, 李玉龙.基于改进BP神经网络的鸟体材料参数反演[J].机械设计与制造, 2010(2):51-53. DOI: 10.3969/j.issn.1001-3997.2010.02.021.

    ZHANG Yongkang, LI Yulong. The inversion of bird's material parameters using improved BP neural network[J]. Machinery Design and Manufacture, 2010(2):51-53. DOI: 10.3969/j.issn.1001-3997.2010.02.021.
    [12]
    张永康, 李玉龙.确定鸟体材料参数的反演方法[J].航空计算技术, 2007, 37(6):1-4. DOI: 10.3969/j.issn.1671-654X.2007.06.001.

    ZHANG Yongkang, LI Yulong. Back analysis of bird material parameter[J]. Aeronautical Computing Technique, 2007, 37(6):1-4. DOI: 10.3969/j.issn.1671-654X.2007.06.001.
    [13]
    刘军, 李玉龙, 郭伟国, 等.鸟体本构模型参数反演:Ⅰ:鸟撞平板试验研究[J].航空学报, 2011, 32(5):802-811. DOI: CNKI:11-1929/V.20110328.1446.007.

    LIU Jun, LI Yulong, GUO Weiguo, et al. Parameters inversion on bird constitutive model:Part Ⅰ:study on experiment of bird striking on plate[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):802-811. DOI: CNKI:11-1929/V.20110328.1446.007.
    [14]
    刘军, 李玉龙, 石霄鹏, 等.鸟体本构模型参数反演:Ⅱ:模型参数反演研究[J].航空学报, 2011, 32(5):812-821. DOI:CNKI:11-1929/V.20110328.1426. 001.

    LIU Jun, LI Yulong, SHI Xiaopeng, et al. Parameter inversion on bird constitutive model:Part Ⅱ:study on model parameters inversion[J]. Acta Aeronautica et Astronautica Sinica, 2011, 35(5):812-821. DOI: CNKI:11-1929/V.20110328.1426.001.
    [15]
    中国民用航空规章: 第25部.运输类飞机适用标准: CCAR-25-R4[S].中国民用航空总局, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (6474) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return