Volume 39 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
LIU Xueling, ZHANG Qi. Influence of pre-ignition turbulence intensity on n-pentane mists explosion[J]. Explosion And Shock Waves, 2019, 39(3): 032101. doi: 10.11883/bzycj-2017-0458
Citation: LIU Xueling, ZHANG Qi. Influence of pre-ignition turbulence intensity on n-pentane mists explosion[J]. Explosion And Shock Waves, 2019, 39(3): 032101. doi: 10.11883/bzycj-2017-0458

Influence of pre-ignition turbulence intensity on n-pentane mists explosion

doi: 10.11883/bzycj-2017-0458
  • Received Date: 2017-12-29
  • Rev Recd Date: 2018-03-10
  • Available Online: 2019-03-25
  • Publish Date: 2019-03-01
  • In this paper we investigated the influence of the pre-ignition turbulence intensity on the explosion parameters of n-pentane mists. By using 0.4, 0.6 and 0.8 MPa of pneumatic pressure spray, we obtained n-pentane mists with the Sauter mean diameter (SMD) of 21.21, 14.51 and 8.64 μm, and at the same time, the pre-ignition turbulence intensity under different pneumatic pressures. Then, in a 20 L mists explosion parameter measuring system for experimental research, we aquired the influence of the pre-ignition turbulence on the evaporation rate, the peak explosion overpressure, the explosion pressure rise rate and the ignition delay time of n-pentane mists. The results showed that, the average turbulence velocity of the enviromental fluid field was zero. The smaller the droplet size was, the more obvious was the increase of the evaporation rate of the mists with the increase of the turbulence intensity. At the same time, for the SMDs of 14.51 and 21.21 μm, the peak pressure and the maximum pressure rise rate increased more obviously with the SMD of 8.64 μm, and the explosion intensity was significantly strong, suggesting the existence of a transition range. For the SMDs in the range of 8−22 μm, the mean square turbulence velocity in 1.0−4.0 m/s was the low growth stage of the flame propagation delay time, whereas that in 4.0−6.2 m/s was the high growth stage. The turbulence intensity and the flame propagation delay time exhibited a linear growth in both stages.
  • loading
  • [1]
    白春华, 梁慧敏, 李建平. 云雾爆轰[M]. 北京: 科学出版社, 2012: 1.

    BAI Chunhua, LIANG Huiming, LI Jianping. Spray detonation[M]. Beijing: Science Press, 2012: 1.
    [2]
    姚干兵, 解立峰, 刘家骢. 液体碳氢燃料云雾爆轰特性的实验研究 [J]. 爆炸与冲击, 2006, 26(6): 543–549 doi: 10.3321/j.issn:1001-1455.2006.06.012

    YAO Ganbing, XIE Lifeng, LIU Jiacong. Experimental study on detonation characteristics of liquid fuel-air mixtures [J]. Explosion and Shock Waves, 2006, 26(6): 543–549 doi: 10.3321/j.issn:1001-1455.2006.06.012
    [3]
    沈晓波, 鲁长波, 李斌, 等. 液体燃料云雾爆轰参数实验 [J]. 爆炸与冲击, 2012, 32(1): 108–112

    SHEN Xiaobo, LU Changbo, LI Bin, et al. An experimental study of detonation parameters of liquid fuel drops cloud [J]. Explosion and Shock Waves, 2012, 32(1): 108–112
    [4]
    LIU Q M, BAI C H, D W X, et al. Deflagration-to-detonation transition in isopropyl nitrate mist/air mixtures [J]. Combustion, Explosion, and Shock Waves, 2011, 47(4): 448–456. doi: 10.1134/S0010508211040083
    [5]
    LIU Q M, BAI C H, JIANG L, et al. Deflagration-to-detonation transition in nitromethane mist/aluminum dust/air mixtures [J]. Combustion and Flame, 2010, 157(1): 106–117. doi: 10.1016/j.combustflame.2009.06.026
    [6]
    MOEN I. Transition to detonation in fuel-air explosive clouds [J]. Journal of Hazardous Materials, 1993, 33(2): 159–192. doi: 10.1016/0304-3894(93)85052-G
    [7]
    STAMPS D W, SLEZAK S E, TIESZEN S R. Observations of the cellular structure of fuel-air detonations [J]. Combustion and Flame, 2006, 144(1): 289–298.
    [8]
    SANTON R C. Mist fires and explosions—an incident survey [C]// IChemE Hazards XXI Symposium & Workshop. Manchester, 2009.
    [9]
    ZABETAKIS M G. Flammability characteristics of combustible gases and vapors: BULL-627[R]. Washington DC: USBM, 1965.
    [10]
    BURGOYNE J H, COHEN L. The effect of drop size on flame propagation in liquid aerosols [J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1954, 225(1162): 375–392.
    [11]
    FAETH G M, OLSON D R. The ignition of hydrocarbon fuel droplets in air[R]. SAE, 1968.
    [12]
    WILLIAMS F A. Mono-disperse spray deflagration [J]. Progress in Astronautics and Rocketry, 1960, 2: 223.
    [13]
    王悦, 白春华. 乙醚云雾场燃爆参数实验研究 [J]. 爆炸与冲击, 2016, 36(4): 497–502

    WANG Yue, BAI Chunhua. Experimental research on explosion parameters of diethyl ether mist [J]. Explosion and Shock Waves, 2016, 36(4): 497–502
    [14]
    王悦, 白春华, 李斌, 等. 正癸烷云雾气液两相浓度对其燃爆参数的影响 [J]. 含能材料, 2015, 23(7): 663–669

    WANG Yue, BAI Chunhua, LI Bin, et al. Influence of the gas-liquid two-phase concentrations of n-decane sprays on its explosion parameters [J]. Chinese Journal of Energetic Materials, 2015, 23(7): 663–669
    [15]
    LIU X L, ZHANG Q, WANG Y. Influence of vapor-liquid two-phase n-hexane/air mixtures on flammability limit and minimum ignition energy [J]. Industrial & Engineering Chemistry Research, 2014, 53(32): 12856–12865.
    [16]
    LIU X L, WANG Y, ZHANG Q. A study of the explosion parameters of vapor-liquid two - phase JP-10/air mixtures [J]. Fuel, 2016, 165: 279–288. doi: 10.1016/j.fuel.2015.10.081
    [17]
    LIU X L, ZHANG Q, WANG Y. Influence of particle size on the explosion parameters in two-phase vapor-liquid n-hexane/air mixtures [J]. Process Safety and Environmental Protection, 2015, 95: 184–194. doi: 10.1016/j.psep.2015.03.006
    [18]
    LIU X L, ZHANG Q, WANG Y. Influence of vapor-liquid two-phase n-heptane on the explosion parameters in air [J]. Combustion Science and Technology, 2015, 187(12): 1879–1904. doi: 10.1080/00102202.2015.1069282
    [19]
    SCHEID M, GEIßLER A, KRAUSE U. Experiments on the influence of pre-ignition turbulence on vented gas and dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2-3): 194–199. doi: 10.1016/j.jlp.2005.04.005
    [20]
    ANDREWS G E, DRADLEY D, LWAKABAMBA S B. Turbulence and turbulent flame propagation -a critical appraisal [J]. Combustion and Flame, 1975, 24: 285–304. doi: 10.1016/0010-2180(75)90163-7
    [21]
    BRADLEY D, MITCHESON A. The venting of gaseous explosions in spherical vessels: I-theory [J]. Combustion and flame, 1978, 32: 221–236. doi: 10.1016/0010-2180(78)90098-6
    [22]
    CHIPPET S. Modeling of vented deflagrations [J]. Combustion and Flame, 1984, 55(2): 127–140. doi: 10.1016/0010-2180(84)90022-1
    [23]
    LIU X L, ZHANG Q. Influence of turbulent flow on the explosion parameters of micro-and nano-aluminum powder-air mixtures [J]. Journal of Hazardous Materials, 2015, 299: 603–617. doi: 10.1016/j.jhazmat.2015.07.068
    [24]
    PRTERS N. The turbulent burning velocity for large-scale and small-scale turbulence [J]. Journal of Fluid Mechanics, 1999, 384: 107–132. doi: 10.1017/S0022112098004212
    [25]
    TENNEKES H. Simple model for the small-scale structure of turbulence [J]. Physics of Fluids, 1968, 11: 669–671. doi: 10.1063/1.1691966
    [26]
    POLYMEROPOULOS C E. Flame propagation in aerosols of fuel droplets, fuel vapor and air [J]. Combustion Science and Technology, 1984, 40(5/6): 217–232.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (5486) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return