Volume 39 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
GENG Shaobo, LI Hong, GE Peijie. Equivalent static load dynamical coefficient for exponential air blast loading with transition[J]. Explosion And Shock Waves, 2019, 39(3): 032201. doi: 10.11883/bzycj-2018-0048
Citation: GENG Shaobo, LI Hong, GE Peijie. Equivalent static load dynamical coefficient for exponential air blast loading with transition[J]. Explosion And Shock Waves, 2019, 39(3): 032201. doi: 10.11883/bzycj-2018-0048

Equivalent static load dynamical coefficient for exponential air blast loading with transition

doi: 10.11883/bzycj-2018-0048
  • Received Date: 2018-02-02
  • Rev Recd Date: 2018-05-12
  • Available Online: 2019-03-25
  • Publish Date: 2019-03-01
  • Compared to linear attenuation load calculation model, exponential attenuation load with transition expression was given to build equivalent SDOF differential equations under air blast loading. The expressions, which had relationship to transition duration, overpressure peak, exponential load adjusting parameter, natural frequency and overpressure duration, were derived to solve equivalent static load dynamical coefficients. Changed with transition duration and load adjusting parameters, four typical calculation conditions results were calculated. The results show that the linear attenuation blast load’s application range is limited. When the ductility ratio β<3.0, the dynamical coefficients from the linear attenuation blast load behaves greater value and safer characteristic. When the ductility ratio β≥3.0 and wt+>1.4δ, it will be lower 17.4% than the value from exponential attenuation load with transition. For the much transition duration ratio, dynamical coefficients will be greater. In the range of 1%−2% for the transition duration ratio, the effect on dynamical coefficients is greater at 0.4−0.7% and can be ignored. Exponential load adjusting parameter has no effect on structural design with great flexibility while it would lead to increase or decrease the dynamical coefficients for the structure with the general flexibility.
  • loading
  • [1]
    中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB50009-2012 [S]. 北京: 中国建筑工业出版社, 2012.
    [2]
    中华人民共和国建设部. 人民防空地下室设计规范: GB50038-2005 [S]. 北京: 中国计划出版社, 2005.
    [3]
    中华人民共和国住房和城乡建设部. 石油化工控制室抗爆设计规范: GB50009-2012 [S]. 北京: 中国计划出版社, 2012.
    [4]
    中华人民共和国住房和城乡建设部. 抗爆间室结构设计规范: GB50907-2013 [S]. 北京: 中国计划出版社, 2013.
    [5]
    北京市规划委员会. 平战结合人民防空工程设计规范: DB11/994-2013 [S]. 北京: 中国建筑工业出版社, 2013.
    [6]
    U.S. ARMY CORPS OF ENGINEERS. Structures to Resist the Effects of Accidental Explosions : TM5-1300 [S]. USA: US Army, 1990.
    [7]
    American Society of Civil Engineering. Design of Blast Resistant Buildings in Petrochemical Facilities: ASCE-41088 [S]. USA: ASCE, 2010.
    [8]
    BIGGS J M. Introduction to structural dynamics[M]. New York: McGraw-Hill, 1964.
    [9]
    伍俊, 刘晶波, 杜义欣. 汽车炸弹爆炸下装配式防爆墙弹塑性动力计算与数值分析 [J]. 防灾减灾工程学报, 2007, 27(4): 394–400 doi: 10.3969/j.issn.1672-2132.2007.04.004

    WU Jun, LIU Jingbo, DU Yixin. Elastic-plastic dynamic calculation and numerical analysis of assembling blast resistant wall under effect of vehicle bombs [J]. Journal of Disaster Prevention & Mitigation Engineering, 2007, 27(4): 394–400 doi: 10.3969/j.issn.1672-2132.2007.04.004
    [10]
    颜海春, 方秦, 张亚栋, 等. 化爆作用下人防工程口部封堵梁的计算与分析 [J]. 解放军理工大学学报: 自然科学版, 2001, 2(3): 78–81 doi: 10.3969/j.issn.1009-3443.2001.03.018

    YAN Haichun, FANG Qin, ZHANG Yadong, et al. Calculation and analysis of beam for blocking entrance in civil air-defense engineering under conventional weapon explosion [J]. Journal of PLA University of Science & Technology, 2001, 2(3): 78–81 doi: 10.3969/j.issn.1009-3443.2001.03.018
    [11]
    杨涛春, 李国强, 王开强. 接触爆炸荷载下钢—混凝土组合梁简化设计方法研究 [J]. 四川建筑科学研究, 2009, 35(6): 1–4 doi: 10.3969/j.issn.1008-1933.2009.06.001

    YANG Taochun, LI Guoqiang, WANG Kaiqiang. Research on the simplified design method for steel-concrete composite beam subjected to contact blast loading [J]. Sichuan Building Science, 2009, 35(6): 1–4 doi: 10.3969/j.issn.1008-1933.2009.06.001
    [12]
    BAKER W E. Explosion hazards and evaluation[M]. Amsterdam: Elsevier Scientific Pub. Co. 1983.
    [13]
    杨科之, 王年桥. 化爆条件下地面结构等效静载计算方法 [J]. 防护工程, 2001, 23(2): 1–7

    YANG Kezhi, WANG Nianqiao. Equivalent static load calculation method for ground structures under chemical explosion [J]. Protective Engineering, 2001, 23(2): 1–7
    [14]
    杨科之, 杨秀敏, 王年桥. 内爆荷载作用下结构等效静载计算方法 [J]. 解放军理工大学学报: 自然科学版, 2002, 3(4): 31–33 doi: 10.3969/j.issn.1009-3443.2002.04.008

    YANG Kezhi, YANG Xiumin, WANG Nianqiao. Equivalent Static Load Calculation Method of Structure Subjected to Internal Explosion [J]. Journal of PLA University of Science & Technology, 2002, 3(4): 31–33 doi: 10.3969/j.issn.1009-3443.2002.04.008
    [15]
    陈俊杰, 高康华, 孙敖. 爆炸条件下结构超压-冲量曲线简化计算研究 [J]. 振动与冲击, 2016, 35(13): 224–232 doi: 10.13465/j.cnki.jvs.2016.13.036

    CHEN Junjie, GAO Kanghua, SUN Ao. Simplified calculation method for pressure-impulse curve under blast load [J]. Journal of Vibration and Shock, 2016, 35(13): 224–232 doi: 10.13465/j.cnki.jvs.2016.13.036
    [16]
    CHEN H L, JIN F N, FAN H L. Elastic responses of underground circular arches considering dynamic soil-structure interaction: A theoretical analysis [J]. Acta Mechanica Sinica, 2013, 29(1): 110–122. doi: 10.1007/s10409-013-0012-7
    [17]
    SHI Y, HAO H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. doi: 10.1016/j.ijimpeng.2007.09.001
    [18]
    GANTES C J, PNEVMATIKOS N G. Elastic–plastic response spectra for exponential blast loading [J]. International Journal of Impact Engineering, 2004, 30(3): 323–343. doi: 10.1016/S0734-743X(03)00077-0
    [19]
    LOUCA L A, PUNJANI M, HARDING J E. Non-linear analysis of blast walls and stiffened panels subjected to hydrocarbon explosions [J]. Journal of Constructional Steel Research, 1996, 37(2): 93–113. doi: 10.1016/0143-974X(95)00026-R
    [20]
    刘亚玲, 耿少波, 刘玉存, 等. 钢箱梁抗爆试验中冲击波超压测试方法研究 [J]. 中北大学学报学报: 自然科学版, 2018, 39(5): 609–614, 620 doi: 10.3969/j.issn.1673-3193.2018.05.021

    LIU Yaling, GENG Shaobo, LIU Yucun, et al. Research on Shock Wave Overpressure Measurement Method in the Anti-Explosion Test of Steel Box Girder [J]. Journal of North University of China (Natural Science Edition), 2018, 39(5): 609–614, 620 doi: 10.3969/j.issn.1673-3193.2018.05.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (5477) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return