Citation: | FAN Yuan, CHEN Li, REN Huiqi, FENG Peng, FANG Qin. Blast-resistant mechanism of RC beam with kinked rebar and calculation method of dynamic resistance coefficient[J]. Explosion And Shock Waves, 2019, 39(3): 035102. doi: 10.11883/bzycj-2018-0181 |
To improve the blast resistance of reinforced concrete (RC) beam, an efficient design method was proposed that bending the longitudinal bar as a wave at an appropriate location in the beam. Combing the experimental results and calculation of finite element model, the damage process of the RC beam with local kinked rebar was found, and the mechanism of blast resistance was revealed. Analytical results indicated that the kinked rebar can increase the allowable deformation of the RC beam under blast loads, effectively absorbing the explosive energy and greatly improving the blast-resistant performance. A theoretical method was developed to calculate the blast resistance of the RC beam with local kinked rebar under blast loads, on base of the energy method. Explicit formulae of the dynamic resistance coefficient were derived. The influences of three key design parameters, e.g. the bearing capacity ratio of platform period to yielding period, the deformation ratio of platform period to elastic period and the deformation ratio of yielding period to elastic period, on the blast resistance of RC beam with local kinked rebar were discussed. It provides a theoretical basis for further engineering application.
[1] |
ALHOZAIMY A M, SOROUSHIAN P, MIRZA F. Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials [J]. Cement & Concrete Composites, 1996, 18(2): 85–92. doi: 10.1016/0958-9465(95)00003-8
|
[2] |
严少华, 李志成, 王明洋, 等. 高强钢纤维混凝土冲击压缩特性试验研究 [J]. 爆炸与冲击, 2002, 22(3): 237–241. doi: 10.3321/j.issn:1001-1455.2002.03.008
YAN Shaohua, LI Zhicheng, WANG Mingyang, et al. Dynamic compressive behavior of high-strength steel fiber reinforced concrete [J]. Explosion and Shock Waves, 2002, 22(3): 237–241. doi: 10.3321/j.issn:1001-1455.2002.03.008
|
[3] |
周乐, 王晓初, 刘洪涛. 碳纤维混凝土力学性能与破坏形态试验研究 [J]. 工程力学, 2013, 30(增刊): 226–231. doi: 10.6052/j.issn.1000-4750.2012.04.S066
ZHOU Le, WANG Xiaochu, LIU Hongtao. Experimental study of mechanical behavior and failure mode of carbon fiber reinforced concrete [J]. Engineering Mechanics, 2013, 30(Suppl): 226–231. doi: 10.6052/j.issn.1000-4750.2012.04.S066
|
[4] |
许静, 朱涵, 刘春生, 等. 橡胶集料混凝土阻尼比的初步试验研究 [J]. 混凝土, 2005(11): 40–42. doi: 10.3969/j.issn.1002-3550.2005.11.011
XU Jing, ZHU Han, LIU Chunsheng, et al. Preliminary experimental studies on damping ratio of crumb rubber concrete [J]. Concrete, 2005(11): 40–42. doi: 10.3969/j.issn.1002-3550.2005.11.011
|
[5] |
万泽青, 刘平, 施伟. 高阻尼混凝土的试验研究及阻尼机理探讨 [J]. 混凝土, 2007(7): 37–40. doi: 10.3969/j.issn.1002-3550.2007.07.013
WAN Zeqing, LIU Ping, SHI Wei. Experimental research and damping mechanism analyses of high damping concrete [J]. Concrete, 2007(7): 37–40. doi: 10.3969/j.issn.1002-3550.2007.07.013
|
[6] |
张宝超, 潘景龙. FRP约束混凝土快速荷载下应力应变关系初探 [J]. 爆炸与冲击, 2003, 23(5): 466–471. doi: 10.3321/j.issn:1001-1455.2003.05.014
ZHANG Baochao, PAN Jinglong. Stress-strain relation of FRP confined concrete subjected to fast load [J]. Explosion and Shock Waves, 2003, 23(5): 466–471. doi: 10.3321/j.issn:1001-1455.2003.05.014
|
[7] |
TENG J G, CHEN J F, SMITH S T, et al. FRP: strengthened RC structures [J]. Frontiers in Physics, 2002: 266.
|
[8] |
WU C, OEHLERS D J, REBENTROST M, et al. Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs [J]. Engineering Structures, 2009, 31(9): 2060–2069. doi: 10.1016/j.engstruct.2009.03.020
|
[9] |
李砚召, 王肖钧, 张新乐, 等. 预应力混凝土结构抗爆性能试验研究 [J]. 实验力学, 2005, 20(2): 179–185. doi: 10.3969/j.issn.1001-4888.2005.02.004
LI Yanzhao, WANG Xiaojun, ZHANG Xinle, et al. Test study on anti-detonation quality of pre-stressed concrete structure [J]. Journal of Experimental Mechanics, 2005, 20(2): 179–185. doi: 10.3969/j.issn.1001-4888.2005.02.004
|
[10] |
CHEN L, FANG Q, LIU J C, et al. Nonlinear analysis of blast performance of partially prestressed RC beams [J]. International Journal of Protective Structures, 2011, 2(3): 295–314. doi: 10.1260/2041-4196.2.3.295
|
[11] |
胡时胜, 刘剑飞, 王梧. 硬质聚氨酯泡沫塑料本构关系的研究[C]//第五次全国爆轰与冲击动力学学术会议, 1997: 151−156. DOI: 10.3321/j.issn:0459-1879.1998.02.004.
HU Shisheng, LIU Jianfei, WANG Wu. Study of the constitutive relationship of rigid polyurethane foam [C]//the 5th National Symposium on Shock & Impact Dynamics,1997: 151−156. DOI: 10.3321/j.issn:0459-1879.1998.02.004.
|
[12] |
SANTOSA S, WIERZBICKI T. Crash behavior of box columns filled with aluminum honeycomb or foam [J]. Computers & Structures, 1998, 68(4): 343–367. doi: 10.1016/S0045-7949(98)00067-4
|
[13] |
ZHU F, ZHAO L, LU G, et al. Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations [J]. International Journal of Impact Engineering, 2008, 35(8): 937–951.
|
[14] |
方秦, 陈力, 杜茂林. 端部设置弹簧和阻尼器提高防护门抗力的理论与数值分析 [J]. 工程力学, 2008, 25(3): 194–199.
FANG Qin, CHEN Li, DU Maolin. Theoretical and numerical investigations in effects of end-supported springs and dampers on increasing resistance of blast doors [J]. Engineering Mechanics, 2008, 25(3): 194–199.
|
[15] |
王宝柱, 黄微波, 杨宇润, 等. 喷涂聚脲弹性体技术的应用 [J]. 聚氨酯工业, 2000(1): 39–44.
WANG Baozhu, HUANG Weibo, YANG Yuyun, et al. Application of spray polyurea elastomer [J]. Polyurethane Industry, 2000(1): 39–44.
|
[16] |
宋彬, 黄正祥, 翟文, 等. 聚脲弹性体夹芯防爆罐抗爆性能研究 [J]. 振动与冲击, 2016, 35(7): 138–144.
SONG Bin, HUANG Zhengxiang, ZHAI Wen, et al. Anti-detonation properties of explosion-proof pots made of sandwich structures with polyurea elastomer [J]. Journal of Vibration and Shock, 2016, 35(7): 138–144.
|
[17] |
国家人民防空办公室. 人民防空地下室设计规范: GB 50038-2005 [S]. 中华人民共和国建设部, 2005.
National People's Air Defense Office. Code for design of civil air defense basement: GB 50038-2005 [S]. Ministry of Construction of the People's Republic of China, 2005.
|
[18] |
方秦, 柳锦春. 地下防护结构[M]. 中国水利水电出版社, 2010.
FANG Qin, LIU Jinchun. Underground protective structure [M]. China Water & Power Press, 2010.
|
[19] |
FENG Peng, QIANG Hanlin, QIN Weihong, et al. A novel kinked rebar configuration for simultaneously improving the seismic performance and progressive collapse resistance of RC frame structures [J]. Engineering Structures, 2017, 147(15): 752–767. doi: 10.1016/j.engstruct.2017.06.042
|
[20] |
高蒙. 配置局部起波钢筋的混凝土梁受力性能试验研究[D]. 东南大学, 2016.
GAO Meng. Experimental study on mechanical behavior of concrete beams reinforced with V-shaped rebar [D]. Southeast University, 2016.
|