Volume 39 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
HUANG Dedong, WANG Qinghua, XING Liangliang, XU Feng, WU Bin. Intelligent collaborative optimization of structural parameters for hook-sheet specimens used in split Hopkinson tensile bar[J]. Explosion And Shock Waves, 2019, 39(10): 104103. doi: 10.11883/bzycj-2018-0371
Citation: HUANG Dedong, WANG Qinghua, XING Liangliang, XU Feng, WU Bin. Intelligent collaborative optimization of structural parameters for hook-sheet specimens used in split Hopkinson tensile bar[J]. Explosion And Shock Waves, 2019, 39(10): 104103. doi: 10.11883/bzycj-2018-0371

Intelligent collaborative optimization of structural parameters for hook-sheet specimens used in split Hopkinson tensile bar

doi: 10.11883/bzycj-2018-0371
  • Received Date: 2018-09-26
  • Rev Recd Date: 2019-04-01
  • Available Online: 2019-09-25
  • Publish Date: 2019-10-01
  • Compared with the fixed connection methods such as thread and adhesive commonly used in the split Hopkinson tensile bar experiments, the hook-sheet specimen has the advantages of simple connection form and quick assembly process. Aiming at measurement uncertainty caused by structural geometric effect of the hook-sheet specimen during the stretching process, based on the indicators for measurement accuracy of hook-sheet specimen, such as response of stress equilibrium, deformation uniformity, relative deformation of the transition zones and non-axial stress level, this paper adopted the multi-objective intelligent collaborative optimization algorithm which comprises orthogonal experimental design, back propagation (BP) neural network and genetic algorithm to optimize the structural parameters of hook-sheet specimen. The optimal structural parameters for hook-sheet specimen is thus obtained and the validity of the optimal structural parameters is verified by finite element simulations and experiments. The results provide a reference for data reliability analysis of split Hopkinson tensile bar experiments based on hook-joint sheet specimen.
  • loading
  • [1]
    KOLSKY H. An investigation of the mechanical properties of material at very high rates of loading [J]. Proceedings of the Physical Society: Section B, 1949, 62(1): 676–700.
    [2]
    HARDING J, WOOD E O, CAMPBELL J D. Tensile testing of materials at impact rates of strain [J]. Journal of Mechanical Engineering Science, 1960, 2(2): 88–96. DOI: 10.1243/JMES_JOUR_1960_002_016_02.
    [3]
    OGAWA K. Impact-tension compression test by using a split Hopkinson bar [J]. Experimental Mechanics, 1984, 24(2): 81–86. DOI: 10.1007/BF02324987.
    [4]
    申海艇, 蒋招绣, 王贝壳, 等. 基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用 [J]. 爆炸与冲击, 2017, 37(1): 15–20. DOI: 10.11883/1001-1455(2017)01-0015-06.

    SHEN Haiting, JIANG Zhaoxiu, WANG Beike, et al. Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation [J]. Explosion and Shock Waves, 2017, 37(1): 15–20. DOI: 10.11883/1001-1455(2017)01-0015-06.
    [5]
    GILAT A, GOLDBERG R K, ROBERTS G D. Experimental study of strain-rate-dependent behavior of carbon/epoxy composite [J]. Composites Science and Technology, 2002, 62(10/11): 1469–1479. DOI: 10.1016/S0266-3538(02)00100-8.
    [6]
    CHEN X, LI Y, ZHI Z, et al. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates [J]. Carbon, 2013, 61: 97–104. DOI: 10.1016/j.carbon.2013.04.073.
    [7]
    OWENS A T, TIPPUR H V. A tensile split Hopkinson bar for testing particulate polymer composites under elevated rates of loading [J]. Experimental Mechanics, 2008, 49(6): 799–811. DOI: 10.1007/s11340-008-9192-7.
    [8]
    朱耀, 庞宝君, 盖秉政. 一种用于动态拉伸试验装置的新型试件装卡方式 [J]. 实验力学, 2009, 24(5): 433–438. DOI: 1001-4888(2009)05-0433-06.

    ZHU Yao, PANG Baojun, GAI Bingzheng. A new specimen fastener for dynamic tensile testing apparatus [J]. Journal of Experimental Mechanics, 2009, 24(5): 433–438. DOI: 1001-4888(2009)05-0433-06.
    [9]
    TAN X, GUO W, GAO X, et al. A new technique for conducting split Hopkinson tensile bar test at elevated temperatures [J]. Experimental Techniques, 2017, 41(2): 191–201. DOI: 10.1007/s40799-017-0167-4.
    [10]
    VERLEYSEN P, DEGRIECK J. Non-homogeneous and multi-axial stress distribution in concrete specimens during split Hopkinson tensile tests [J]. Computers and Structures, 2000, 77(6): 669–676. DOI: 10.1016/S0045-7949(00)00022-5.
    [11]
    CHEN W, LU F, CHENG M. Tension and compression tests of two polymers under quasi-static and dynamic loading [J]. Polymer Testing, 2002, 21(2): 113–121. DOI: 10.1016/S0142-9418(01)00055-1.
    [12]
    PRABOWO Q A, KARIEM M A, GUNAWAN L. The effect of specimen dimension on the results of the split Hopkinson tension bar testing [J]. Procedia Engineering, 2017, 173: 608–614. DOI: 10.1016/j.proeng.2016.12.114.
    [13]
    VERLEYSEN P, DEGRIECK J, VERSTRAETE T, et al. Influence of specimen geometry on split Hopkinson tensile bar test on sheet materials [J]. Experimental Mechanics, 2008, 48(5): 587–598. DOI: 10.1007/s11340-008-9149-x.
    [14]
    NGUYEN K H, KIM H C, SHIN H, et al. Numerical investigation into the stress wave transmitting characteristics of threads in the split Hopkinson tensile bar test [J]. International Journal of Impact Engineering, 2017, 109: 253–263. DOI: 10.1016/j.ijimpeng.2017.07.004.
    [15]
    王礼立. 应力波基础[M]. 第2版. 北京: 国防工业出版社, 2005: 52−60.
    [16]
    SMERD R, WINKLER S, SALISBURY C, et al. High strain rate tensile testing of automotive aluminum alloy sheet [J]. International Journal of Impact Engineering, 2005, 32(1): 541–560. DOI: 10.1016/j.ijimpeng.2005.04.013.
    [17]
    SONG B, CHEN W. Dynamic stress equilibrium in split Hopkinson pressure bar tests on soft materials [J]. Experimental Mechanics, 2004, 44: 300–312. DOI: 10.1007/BF02427897.
    [18]
    施建俊, 李庆亚, 张琪, 等. 基于Matlab和BP神经网络的爆破振动预测系统 [J]. 爆炸与冲击, 2017, 37(6): 1087–1092. DOI: 10.11883/1001-1455(2017)06-1087-06.

    SHI Jianjun, LI Qingya, ZHANG Qi. Forecast system for blasting vibration velocity peak based on Matlab and BP neural network [J]. Explosion and Shock Waves, 2017, 37(6): 1087–1092. DOI: 10.11883/1001-1455(2017)06-1087-06.
    [19]
    WEN J, LIU C H, YAO H, et al. A nonlinear dynamic model and parameters identification method for predicting the shock pulse of rubber waveform generator [J]. International Journal of Impact Engineering, 2018, 120: 1–15. DOI: 10.1016/j.ijimpeng.2018.05.009.
    [20]
    李守巨, 刘迎曦, 刘玉静, 等. 基于遗传算法的爆炸冲击荷载参数识别方法 [J]. 爆炸与冲击, 2002, 22(4): 295–300.

    LI Shouju, LIU Yingxi, LIU Yujing, et al. Parameter identification procedures of explosion shock loading based on genetic algorithm [J]. Explosion and Shock Waves, 2002, 22(4): 295–300.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(8)

    Article Metrics

    Article views (5835) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return