Volume 40 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
SHU Qi, DONG Xinlong, YU Xinlu. A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar[J]. Explosion And Shock Waves, 2020, 40(8): 084101. doi: 10.11883/bzycj-2019-0433
Citation: SHU Qi, DONG Xinlong, YU Xinlu. A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar[J]. Explosion And Shock Waves, 2020, 40(8): 084101. doi: 10.11883/bzycj-2019-0433

A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar

doi: 10.11883/bzycj-2019-0433
  • Received Date: 2019-11-18
  • Rev Recd Date: 2020-01-20
  • Available Online: 2020-07-25
  • Publish Date: 2020-08-01
  • The M-shaped specimen can be used in dynamic tensile testing only by using the conventional split Hopkinson pressure bar, which do not need the connection between specimen and bars. But the feasibility of this method has not been further verified widely. In this paper, the dynamic tensile testing of M-shaped specimen were analyzed and improved by the finite element and experimental method. The results show that: (1) the improved closed M-shaped specimen was proposed, which can enhance the total stiffness of the specimen, effectively reduce the distortion deformation of the specimen and the influence of additional bending moment in the tensile gage section, and easily realize dynamic tensile through Hopkinson pressure bar; (2) the influence of the elastic deformation of the M-specimen on the tensile displacement could be corrected by the stiffness coefficient of specimen, the plastic strain of the tensile section of the specimen can be analyzed accurately; (3) under higher loading rate, it is suggested to adopt loading through the pulse shaper of Hopkinson bar, which can significantly improve the wave oscillation and stress balance at both ends of the specimen, obtain an accurate dynamic stress-strain curve, and realize the dynamic tensile test up to 5 900 s−1 or even higher strain rate. The study provides an important reference for the design and application of tensile test of M-shaped specimen.
  • loading
  • [1]
    DAVIES R M. A critical study of the Hopkinson pressure bar [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948, 240(821): 375–457. DOI: 10.1098/rsta.1948.0001.
    [2]
    KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society, Section B, 1949, 62(11): 676–700. DOI: 10.1088/0370-1301/62/11/302.
    [3]
    GRAY Ⅲ G T, BLUMENTHAL W R. Split-Hopkinson pressure bar testing of soft materials [C] // KUHN H, MEDLIN D. SAM handbook: mechanical testing and evaluation. Materials Park, OH: ASM International, 2000: 488−496.
    [4]
    王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005.
    [5]
    胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [6]
    DUFFY J, CAMPBELL J D, HAWLEY R H. On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum [J]. Journal of Applied Mechanics, 1971, 38(1): 83–91. DOI: 10.1115/1.3408771.
    [7]
    NICHOLAS T. Tensile testing of materials at high rates of strain [J]. Experimental Mechanics, 1981, 21(5): 177–185. DOI: 10.1007/BF02326644.
    [8]
    OGAWA K. Impact-tension compression test by using a split-Hopkinson bar [J]. Experimental Mechanics, 1984, 24(2): 81–86. DOI: 10.1007/BF02324987.
    [9]
    STAAB G H, GILAT A. A direct-tension split Hopkinson bar for high strain-rate testing [J]. Experimental Mechanics, 1991, 31(3): 232–235. DOI: 10.1007/BF02326065.
    [10]
    宋顺成, 田时雨. Hopkinson冲击拉杆的改进及应用 [J]. 爆炸与冲击, 1992, 12(1): 62–67.

    SONG S C, TIAN S Y. Dynamic tensile testing of materials using the hollow Hopkinson bars instead of the solid Hopkinson bars [J]. Explosion and Shock Waves, 1992, 12(1): 62–67.
    [11]
    胡时胜, 邓德涛, 任小彬. 材料冲击拉伸实验的若干问题探讨 [J]. 实验力学, 1998, 13(1): 9–14.

    HU S S, DENG D T, REN X B. A study on impact tensile test of materials [J]. Journal of Experimental Mechanics, 1998, 13(1): 9–14.
    [12]
    田宏伟, 郭伟国. 动态拉伸试验中试样应变测试的有效性分析 [J]. 实验力学, 2008, 23(5): 403–410.

    TIAN H W, GUO W G. Validity analysis of sample strain measurement in dynamic tensile experiment [J]. Journal of Experimental Mechanics, 2008, 23(5): 403–410.
    [13]
    彭刚, 冯家臣, 胡时胜, 等. 纤维增强复合材料高应变率拉伸实验技术研究 [J]. 实验力学, 2004, 19(2): 136–143. DOI: 10.3969/j.issn.1001-4888.2004.02.002.

    PENG G, FENG J C, HU S S, et al. A Study on high strain rate tensile experimental technique aimed at fiber reinforced composite [J]. Journal of Experimental Mechanics, 2004, 19(2): 136–143. DOI: 10.3969/j.issn.1001-4888.2004.02.002.
    [14]
    MOHR D, GARY G. M-shaped specimen for the high-strain rate tensile testing using a split Hopkinson pressure bar apparatus [J]. Experimental Mechanics, 2007, 47(5): 681–692. DOI: 10.1007/s11340-007-9035-y.
    [15]
    CADONI E, FORNI D, GIELETA R, et al. Tensile and compressive behaviour of S355 mild steel in a wide range of strain rates [J]. The European Physical Journal Special Topics, 2018, 227(1−2): 29–43. DOI: 10.1140/epjst/e2018-00113-4.
    [16]
    史同亚, 刘东升, 陈伟, 等. 激光选区熔化增材制造GP1不锈钢动态拉伸力学响应与层裂破坏 [J]. 爆炸与冲击, 2019, 39(7): 49–60. DOI: 10.11883/bzycj-2019-0015.

    SHI T Y, LIU D S, CHENG W, et al. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting [J]. Explosion and Shock Waves, 2019, 39(7): 49–60. DOI: 10.11883/bzycj-2019-0015.
    [17]
    SONG B, NISHIDA E, SANBORN B, et al. Compressive and tensile stress-strain responses of additively manufactured (AM) 304 L stainless steel at high strain rates [J]. Journal of Dynamic Behavior of Materials, 2017, 3(3): 412–425. DOI: 10.1007/s40870-017-0122-6.
    [18]
    丁利, 李怀学, 王玉岱, 等. 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响 [J]. 中国激光, 2015, 42(4): 0406003. DOI: 10.3788/CJL201542.0406003.

    DING L, LI H X, WANG Y D, et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting [J]. Chinese Journal of Lasers, 2015, 42(4): 0406003. DOI: 10.3788/CJL201542.0406003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (3258) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return