Volume 41 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
YIN Zhiyong, CHEN Xiaowei. Analysis of characteristic control parameters of long-rod penetration[J]. Explosion And Shock Waves, 2021, 41(2): 023302. doi: 10.11883/bzycj-2020-0057
Citation: YIN Zhiyong, CHEN Xiaowei. Analysis of characteristic control parameters of long-rod penetration[J]. Explosion And Shock Waves, 2021, 41(2): 023302. doi: 10.11883/bzycj-2020-0057

Analysis of characteristic control parameters of long-rod penetration

doi: 10.11883/bzycj-2020-0057
  • Received Date: 2020-03-05
  • Rev Recd Date: 2020-06-30
  • Available Online: 2021-02-02
  • Publish Date: 2021-02-05
  • For ideal long-rod penetration, by analyzing the approximate solutions of the Alekseevskii-Tate model for long-rod penetration, it is pointed out that the single deceleration index α is not sufficient to fully describle the quasi-steady process of long-rod penetration. This paper redefines two dimensionless parameters, namely Johnson demage parameter ΦJp and characteristic time parameter β, and α=β/ΦJp. The analysis shows that two characteristic parameters ΦJp and β (or α and β) can completely characterize the impact velocity of the projectile tail in the quasi-steady process of long-rod penetration. If the dimensionless critical impact velocity vc* is introduced, the quasi-steady process of long-rod penetration can be fully characterized. In addition, this paper strictly proves that the degree of deviation from the steady state in the penetration process can be determined by α, and confirms that by determining ΦJp and β (or α and β), the design of long-rod penetration can be guided for offensive and defensive needs.
  • loading
  • [1]
    焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.

    JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.
    [2]
    ALLEN W A, ROGERS J W. Penetration of a rod into a semi-infinite target [J]. Journal of the Franklin Institute, 1961, 272(4): 275–284. DOI: 10.1016/0016-0032(61)90559-2.
    [3]
    ALEKSEEVSKII V P. Penetration of a rod into a target at high velocity [J]. Combustion, Explosion and Shock Waves, 1966, 2(2): 63–66. DOI: 10.1007/BF00749237.
    [4]
    TATE A. A theory for the deceleration of long rods after impact [J]. Journal of the Mechanics and Physics of Solids, 1967, 15(6): 387–399. DOI: 10.1016/0022-5096(67)90010-5.
    [5]
    TATE A. Further results in the theory of long rod penetration [J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 141–150. DOI: 10.1016/0022-5096(69)90028-3.
    [6]
    焦文俊. 长杆高速侵彻的1D和2D理论模型 [D]. 合肥: 中国科学技术大学, 2019.
    [7]
    JIAO W J, CHEN X W. Analysis of the velocity relationship and deceleration of long-rod penetration [J]. Acta Mechanica Sinica, 2019, 35(4): 852–865. DOI: 10.1007/s10409-019-00862-1.
    [8]
    JIAO W J, CHEN X W. Approximate solutions of the Alekseevskii-Tate model of long-rod penetration [J]. Acta Mechanica Sinica, 2018, 34(2): 334–348. DOI: 10.1007/s10409-017-0672-9.
    [9]
    WALTERS W, WILLIAMS C, NORMANDIA M. An explicit solution of the Alekseevski-Tate penetration equations [J]. International Journal of Impact Engineering, 2006, 33(1−12): 837–846. DOI: 10.1016/j.ijimpeng.2006.09.057.
    [10]
    ANDERSON Jr C E, WALKER J D. An examination of long-rod penetration [J]. International Journal of Impact Engineering, 1991, 11(4): 481–501. DOI: 10.1016/0734-743X(91)90015-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (900) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return