Volume 41 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
LIN Kunfu, ZHANG Xianfeng, CHEN Haihua, XIONG Wei, LIU Chuang, ZHANG Quanxiao. Penetration behaviors of Hf-based amorphous alloy jacketed rods[J]. Explosion And Shock Waves, 2021, 41(2): 023301. doi: 10.11883/bzycj-2020-0181
Citation: LIN Kunfu, ZHANG Xianfeng, CHEN Haihua, XIONG Wei, LIU Chuang, ZHANG Quanxiao. Penetration behaviors of Hf-based amorphous alloy jacketed rods[J]. Explosion And Shock Waves, 2021, 41(2): 023301. doi: 10.11883/bzycj-2020-0181

Penetration behaviors of Hf-based amorphous alloy jacketed rods

doi: 10.11883/bzycj-2020-0181
  • Received Date: 2020-06-03
  • Rev Recd Date: 2020-11-05
  • Available Online: 2021-02-02
  • Publish Date: 2021-02-05
  • Amorphous alloys have attracted wide interest from from domestic and foreign research scholars in recent years. In order to explore the deformation behavior and high-speed penetration performance of Hf-based bulk amorphous alloys, the static (10−3 s−1) and dynamic (102−104 s−1) mechanical properties tests of Hf-based bulk amorphous alloy materials were carried out. Based on the structure of the jacketed rod, penetration experiments were performed as well. Two kinds of jacketed rod projectiles, in Hf-based bulk amorphous alloy and 45 steel, penetrated into the semi-infinite 45 steel targets with velocities in the range of 1000−1500 m/s. The experimental results show that the Hf-based bulk amorphous alloy has a high fracture strength of 1.69 GPa under quasi-static compression (10−3 s−1), and 1.15 GPa under dynamic compression (102−104 s−1). The fracture of Hf-based bulk amorphous alloy is accompanied by a energy release phenomenon. The process of Hf-based bulk amorphous alloy jacketed rod projectiles penetrating the steel target can be divided into three stages: pit opening stage, penetration stage of the jacketed rod structure and remaining projectile penetration. The Hf amorphous alloy has an obvious energy-releasing reaction during the penetration process. The energy-releasing reaction of the Hf-based bulk amorphous alloy enhanced the damage effect of the projectile significantly by enlarging the diameter of the penetration bullet hole, and increasing the penetration depth and bullet hole volume. Compared with the 45 steel jacketed rod within the tested kinetic energy range, the range of increase in the diameter of the penetration single hole, the penetration depth and the volume of penetration bullet holes are 14.4%−23.8%, 5.2%−13.1%, and 12.9%−54.3%, respectively. In conclusion, the Hf-based bulk amorphous alloy jacketed rod projectile exhibits excellent penetration performance, which can provide new ideas for the application of amorphous alloy materials in the field of efficient damage.
  • loading
  • [1]
    杜忠华, 杜成鑫, 朱正旺, 等. 钨丝/锆基非晶复合材料长杆体弹芯穿甲实验研究 [J]. 稀有金属材料与工程, 2016, 45(5): 1308–1313.

    DU Z H, DU C X, ZHU Z W, et al. An experimental study on perforation behavior of pole penetrator prepared from WF/Zr-based bulk metallic glass matrix composite [J]. Rare Metal Materials and Engineering, 2016, 45(5): 1308–1313.
    [2]
    CULLIS I G, LYNCH N J. Hydrocode and experimental analysis of scale size jacketed KE projectiles [C] // Proceedings of the 14th International Symposium on Ballistics. Quebec, Canada, 1993: 271−280.
    [3]
    LEHR H F, WOLLMAN E, KOERBER G. Experiments with jacketed rods of high fineness ratio [J]. International Journal of Impact Engineering, 1995, 17(4−6): 517–526. DOI: 10.1016/0734-743x(95)99876-s.
    [4]
    SORENSEN B R, KIMSEY K D, ZUKAS J A, et al. Numerical analysis and modeling of jacketed rod penetration [J]. International Journal of Impact Engineering, 1999, 22(1): 71–91. DOI: 10.1016/S0734-743X(98)00043-8.
    [5]
    PEDERSEN B A, BLESS S J, CAZAMIAS J U. Hypervelocity jacketed penetrators [J]. International Journal of Impact Engineering, 2001, 26(1−10): 603–611. DOI: 10.1016/S0734-743X(01)00121-X.
    [6]
    LEE M. Analysis of jacketed rod penetration [J]. International Journal of Impact Engineering, 2000, 24(9): 891–905. DOI: 10.1016/S0734-743X(00)00020-8.
    [7]
    WEN H M, HE Y, LAN B. A combined numerical and theoretical study on the penetration of a jacketed rod into semi-infinite targets [J]. International Journal of Impact Engineering, 2011, 38(12): 1001–1010. DOI: 10.1016/j.ijimpeng.2011.07.001.
    [8]
    TANG K, WANG J, CHEN X, et al. Investigation on the damage mechanisms and penetration performance of jacketed rods with different striking velocities [J]. Journal of Applied Mechanics and Technical Physics, 2019, 60(4): 724–731. DOI: 10.1134/S0021894419040175.
    [9]
    兰彬. 长杆弹侵彻半无限靶的数值模拟和理论研究[D]. 合肥: 中国科学技术大学, 2008: 91−99.
    [10]
    何雨. 长杆弹撞击下金属靶板侵彻与穿透的进一步研究[D]. 合肥: 中国科学技术大学, 2013: 40−46.
    [11]
    CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007.
    [12]
    MARTIN M, KECSKES L, THADHANI N N. Dynamic compression of a zirconium-based bulk metallic glass confined by a stainless steel sleeve [J]. Scripta Materialia, 2008, 59(7): 688–691. DOI: 10.1016/j.scriptamat.2008.05.045.
    [13]
    潘念侨. Zr基非晶合金材料动态本构关系及其释能效应研究[D]. 南京: 南京理工大学, 2016: 36−54.
    [14]
    尚春明, 施冬梅, 张云峰, 等. Zr基非晶合金毁伤研究进展 [J]. 兵器装备工程学报, 2020, 41(7): 182–186. DOI: 10.11809/bqzbgcxb2020.07.036.

    SHANG C M, SHI D M, ZHANG Y F, et al. Research progress on damage of Zr-based amorphous alloys [J]. Journal of Ordnance Equipment Engineering, 2020, 41(7): 182–186. DOI: 10.11809/bqzbgcxb2020.07.036.
    [15]
    汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177–351.

    WANG W H. The nature and properties of amorphous matter [J]. Progress in Physics, 2013, 33(5): 177–351.
    [16]
    陈曦, 杜成鑫, 程春, 等. Zr基非晶合金材料的冲击释能特性 [J]. 兵器材料科学与工程, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002.

    CHEN X, DU C X, CHENG C, et al. Impact energy releasing characteristics of Zr-based amorphous alloy [J]. Ordnance Material Science and Engineering, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002.
    [17]
    宋璇, 吴先前, 戴兰宏, 等. 纳秒脉冲激光烧蚀非晶合金的研究进展 [J]. 固体力学学报, 2018, 39(5): 439–452. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2018.032.

    SONG X, WU X Q, DAI L H, et al. Advances on nanosecond pulse laser ablation of amorphous alloys [J]. Chinese Journal of Solid Mechanics, 2018, 39(5): 439–452. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2018.032.
    [18]
    尚春明, 施冬梅, 张云峰, 等. Zr基非晶合金的燃烧释能特性 [J]. 含能材料, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.

    SHANG C M, SHI D M, ZHANG Y F, et al. Combustion and energy release characteristics of Zr-based amorphous alloys [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.
    [19]
    HUANG C M, LI S, BAI S X. Quasi-static and impact-initiated response of Zr55Ni5Al10Cu30 alloy [J]. Journal of Non-Crystalline Solids, 2018, 481: 59–64. DOI: 10.1016/j.jnoncrysol.2017.10.011.
    [20]
    石永相, 施冬梅. ZrCuNiAlAg块体非晶合金动静态力学性能研究 [J]. 热加工工艺, 2019, 48(6): 83–86, 90. DOI: 10.14158/j.cnki.1001-3814.2019.06.020.

    SHI Y X, SHI D M. Study on dynamic and static mechanical properties of ZrCuNiAlAg bulk amorphous alloy [J]. Hot Working Technology, 2019, 48(6): 83–86, 90. DOI: 10.14158/j.cnki.1001-3814.2019.06.020.
    [21]
    石永相. 多元非晶合金含能材料药型罩应用研究[D]. 石家庄: 陆军工程大学, 2017: 44−56.
    [22]
    HU K, LI X Q, GUAN M, et al. Dynamic deformation behavior of 93W-5.6Ni-1.4Fe heavy alloy prepared by spark plasma sintering [J]. International Journal of Refractory Metals and Hard Materials, 2016, 58: 117–124. DOI: 10.1016/j.ijrmhm.2016.04.010.
    [23]
    郭俊. 活性分段动能杆对混凝土靶的毁伤效应研究[D]. 北京: 北京理工大学, 2016: 36−64.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Article Metrics

    Article views (602) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return