Volume 41 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
WU Qiang, ZHANG Qingming, GONG Zizheng, REN Siyuan, LIU Hai. Experimental investigation into performances of an active Whipple shield against hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021406. doi: 10.11883/bzycj-2020-0266
Citation: WU Qiang, ZHANG Qingming, GONG Zizheng, REN Siyuan, LIU Hai. Experimental investigation into performances of an active Whipple shield against hypervelocity impact[J]. Explosion And Shock Waves, 2021, 41(2): 021406. doi: 10.11883/bzycj-2020-0266

Experimental investigation into performances of an active Whipple shield against hypervelocity impact

doi: 10.11883/bzycj-2020-0266
  • Received Date: 2020-08-04
  • Rev Recd Date: 2020-10-21
  • Available Online: 2021-02-02
  • Publish Date: 2021-02-05
  • With the continuous increase of centimeter-scale space debris, the exploration and design of new high-performance shields has become an urgent need. Based on the shield of active materials, the hypervelocity impact experiments with different projectile sizes and impact velocities were carried out by using a two-stage light gas gun. The image characteristics of debris clouds under different impact conditions were obtained and analyzed by laser shadowgraph photography. The damage characteristics of the rear wall of the active Whipple shield were studied. Through the statistical analysis of the number of craters, the influences of active materials on the fragmentation of projectiles under different impact velocities were obtained. Compared with the classical Christiansen ballistic limit equation, the protective performance of energetic active material shield was obtained, and the ballistic limit curve of the new shield was fitted. Analysis suggests that shock initiation characteristics of active materials under impact enhanced the shield performance. When impacted by the space debris, active material shield firstly uses its mechanical strength for primary crushing. During this process, the energetic material shield has an explosive reaction with an instantaneous temperature being as high as 3 800 K, which can promote fragmentation, melting and reduce the size of the space debris. At the same time, the explosion products with high temperature, pressure and high speed motion produce a negative acceleration to the projectile fragments, reducing the axial kinetic energy. The explosion products of the active materials are mostly gaseous, which greatly reduce the number of the fragments with penetration ability in the debris cloud. The penetration failure of the rear plate only comes from the fragments generated by the fragmentation of the projectile. Under the combined action of impact and explosion, the active materials shield can not only fully break and decelerate space debris, but also greatly reduce the number of solid debris in debris cloud, thereby produce a sharp rise in the spacecraft protection ability, and the maximum protection ability can be increased by 45% when the velocity is 2.31 km/s.
  • loading
  • [1]
    龚自正, 赵秋艳, 李明, 等. 空间碎片防护研究前沿问题与展望 [J]. 空间碎片研究, 2019, 19(3): 2–13.

    GONG Z Z, ZHAO Q Y, LI M, et al. The frontier problem and prospect of space debris protection research [J]. Space Debris Research, 2019, 19(3): 2–13.
    [2]
    COUR-PALAIS B G, CREW J L. A multi-shock concept for spacecraft shielding [J]. International Journal of Impact Engineering, 1990, 10: 135–146. DOI: 10.1016/0734-743X(90)90054-Y.
    [3]
    CHRISTIANSEN E L, KERR J H. Mesh double-bumper shield: a low-weight alternative for spacecraft meteoroid and orbital debris protection [J]. International Journal of Impact Engineering, 1993, 14: 169–180. DOI: 10.1016/0734-743X(93)90018-3.
    [4]
    CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1−3): 217–228. DOI: 10.1016/0734-743X(95)99848-L.
    [5]
    CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23(11): 125–136. DOI: 10.1016/S0734-743X(99)00068-8.
    [6]
    贾古寨, 哈跃, 庞宝君, 等. 玄武岩/Kevlar纤维布填充防护结构撞击极限及损伤特性 [J]. 爆炸与冲击, 2016, 36(4): 433–440. DOI: 10.11883/1001-1455(2016)04-0433-08.

    JIA G Z, HA Y, PANG B J, et al. Ballistic limit and damage properties of basalt/Kevlar stuffed shield [J]. Explosion and Shock Waves, 2016, 36(4): 433–440. DOI: 10.11883/1001-1455(2016)04-0433-08.
    [7]
    王应德, 冯春祥, 宋永才, 等. 碳化硅纤维连续化工艺研究 [J]. 宇航材料工艺, 1997(2): 21–25.

    WANG Y D, FENG C X, SONG Y C, et al. Study on process of continuous sic fibers [J]. Aerospace Materials & Technology, 1997(2): 21–25.
    [8]
    侯明强, 龚自正, 徐坤博, 等. Al/Mg阻抗梯度材料超高速撞击机理数值仿真研究 [J]. 航天器环境工程, 2013, 30(6): 581–585. DOI: 10.3969/j.issn.1673-1379.2013.06.003.

    HOU M Q, GONG Z Z, XU K B, et al. Numerical study on hypervelocity impact mechanism of Al/Mg wave impedance-grade material [J]. Spacecraft Environment Engineering, 2013, 30(6): 581–585. DOI: 10.3969/j.issn.1673-1379.2013.06.003.
    [9]
    ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
    [10]
    WANG H, ZHENG Y, YU Q, et al. Impact-induced initiation and energy release behavior of reactive materials [J]. Journal of Applied Physics, 2011, 110(7): 074904. DOI: 10.1063/1.3644974.
    [11]
    门建兵, 蒋建伟, 帅俊锋, 等. 复合反应破片爆炸成型与毁伤实验研究 [J]. 北京理工大学学报, 2010, 30(10): 1143–1146. DOI: 10.15918/j.tbit1001-0645.2010.10.007.

    MEN J B, JIANG J W, SHUAI J F, et al. Experimental research on formation and terminal effect of explosively formed compound reactive fragments [J]. Transactions of Beijing Institute of Technology, 2010, 30(10): 1143–1146. DOI: 10.15918/j.tbit1001-0645.2010.10.007.
    [12]
    肖艳文, 徐峰悦, 余庆波. 类钢密度活性材料弹丸撞击铝靶行为实验研究 [J]. 兵工学报, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007.

    XIAO Y W, XU F Y, YU Q B. Experimental research on behavior of active material projectile with steel-like density impacting aluminum target [J]. Acta Armamentarii, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007.
    [13]
    徐松林, 阳世清, 张炜, 等. PTFE/A1含能复合物的本构关系 [J]. 爆炸与冲击, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.

    XU S L, YANG S Q, ZHANG W, et al. A constitutive relation for a pressed PTFE/A1 energetic composite material [J]. Explosion and Shock Waves, 2010, 30(4): 439–444. DOI: 10.11883/1001-1455(2010)04-0439-06.
    [14]
    武强, 张庆明, 龙仁荣, 等. 活性材料防护屏在球形弹丸超高速撞击下的穿孔特性研究 [J]. 兵工学报, 2017, 38(11): 2126–2133. DOI: 10.3969/j.issn.1000-1093.2017.11.007.

    WU Q, ZHANG Q M, LONG R R, et al. Perforation characteristics of energetic material shield induced by hypervelocity impact of spherical projectile [J]. Acta Armamentarii, 2017, 38(11): 2126–2133. DOI: 10.3969/j.issn.1000-1093.2017.11.007.
    [15]
    柳森, 谢爱民, 黄洁, 等. 超高速碰撞碎片云的四序列激光阴影照相 [J]. 实验流体力学, 2010, 24(1): 1–5. DOI: 10.3969/j.issn.1672-9897.2010.01.001.

    LIU S, XIE A M, HUANG J, et al. Four sequences laser shadowgraph for the visualization of hypervelocity impact debris cloud [J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 1–5. DOI: 10.3969/j.issn.1672-9897.2010.01.001.
    [16]
    张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000: 110−122.
    [17]
    CHRISTIANSEN E L. Design and performance equations for advanced meteoroid and debris shield [J]. International Journal of Impact Engineering, 1993, 14(6−10): 145–156. DOI: 10.1016/0734-743X(93)90016-Z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (930) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return