WANG Hui, WANG Lili, MIAO Fuxing, GONG Wenbo, HUAN Shi, XU Chong. On “pump theory” and “wave theory” of cardiac function[J]. Explosion And Shock Waves, 2020, 40(11): 111101. doi: 10.11883/bzycj-2020-0386
Citation: WANG Hui, WANG Lili, MIAO Fuxing, GONG Wenbo, HUAN Shi, XU Chong. On “pump theory” and “wave theory” of cardiac function[J]. Explosion And Shock Waves, 2020, 40(11): 111101. doi: 10.11883/bzycj-2020-0386

On “pump theory” and “wave theory” of cardiac function

doi: 10.11883/bzycj-2020-0386
  • Received Date: 2020-10-14
  • Rev Recd Date: 2020-10-21
  • Publish Date: 2020-11-05
  • The “pump theory” and “wave theory” of cardiac function are analyzed. It is shown that the heart plays a role actually not as a pump but as a pulse generator, producing a series of pulse waves that carry energy. Each pulse wave consists of an ascending branch and a descending branch. The former corresponds to a loading process, in which the pressure, particle velocity, energy as well as oxygen saturation all increase with time. While the latter corresponds to an unloading process, in which the pressure, particle velocity, energy as well as oxygen saturation all decrease, up to zero. So the concepts proposed in the “pump theory”, such as the Windkessel effect, one engine-two pump and diastolic pump, all do not hold up. The cardiac power of about 1.5 W essentially represents the power of each pulse wave. Aimed at the characteristic that the pulse wave is a complex wave with fluid-solid coupling and longitudinal wave-transverse wave coupling, it is shown that the main part of energy (99.99%) is carried by the transverse waves, which propagate along the solid blood-vessel so that the dissipation is low and the efficiency is high. Moreover, it is shown that the increase of generalized wave impedance at the vascular branches may help to counteract the attenuation and dissipation of pulse waves and increase the pulse pressure propagating into the branches, which may be regarded as a kind of self-regulation mechanism of human body.
  • [1]
    孙庆伟, 王春梅, 高艳华, 等. 医用生理学[M]. 北京: 中国医药科技出版社, 2000.
    [2]
    朱思明. 医用生理学[M]. 北京: 北京科学出版社, 2002.
    [3]
    HALL J E. Guyton and Hall textbook of medical physiology [M]. Philadelphia: Elsevier, 2016.
    [4]
    BARRETT K E, BARMAN S M, BROOKS H L, et al. Ganong’s review of medical physiology [M]. 26th ed. New York: McGraw-Hill Education, 2019.
    [5]
    SALVI P. Pulse waves: how vascular hemodynamics affects blood pressure [M]. 2nd ed. Cham: Springer, 2017.
    [6]
    EULER L. Principia pro motu sanguinis per arterias determinando [M]. Opera Postuma, 1862: 814−823.
    [7]
    SKALAK R, KELLER S R, SECOMB T W. Mechanics of blood flow [J]. Journal of Biomechanical Engineering, 1981, 103(2): 102–115. DOI: 10.1115/1.3138253.
    [8]
    孙广仁. 中医基础理论[M]. 北京: 中国中医药出版社, 2002.
    [9]
    WANG L L, WANG H. Mechanics modeling and inverse analyses of pulse wave system from the view-point of traditional Chinese medicine [C] // Proceedings of the ASME 2016, 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016. DOI: 10.1115/OMAE2016-55106.
    [10]
    王礼立, 王晖. 脉搏波系统的力学模型及反演兼对若干中医学问题的讨论 [J]. 力学学报, 2016, 48(6): 1416–1424. DOI: 10.6052/0459-1879-15-322.

    WANG L L, WANG H. Mechanics modeling and inverse analyses of pulse waves system with discussions on some concepts in the traditional Chinese medicine [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1416–1424. DOI: 10.6052/0459-1879-15-322.
    [11]
    王礼立, 王晖, 杨黎明, 等. 论脉搏波客观化和定量化研究的症结所在 [J]. 中华中医药杂志, 2017, 32(11): 4855–4863. DOI: CNKI:SUN:BXYY.0.2017-11-020.

    WANG L L, WANG H, YANG L M, et al. Crux of objectification and quantification of pulse waves [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2017, 32(11): 4855–4863. DOI: CNKI:SUN:BXYY.0.2017-11-020.
    [12]
    王唯工. 气血的弦律[M]. 台北: 大塊文化, 2010.
    [13]
    王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    [14]
    COTTER G, WILLIAMS S G, VERED Z, et al. Role of cardiac power in heart failure [J]. Current Opinion in Cardiology, 2003, 18(3): 215–222. DOI: 10.1097/00001573-200305000-00007.
    [15]
    ASKARI A T, MESSERLI A W. Cardiovascular hemodynamics: an introductory guide [M]. New York: Humana Press, 2019.
    [16]
    FUSTER R, O’ROURKE R, WALSH R, et al. Hurst’s the heart [M]. 12th ed. New York: The McGraw-Hill Companies, Inc, 2008.
    [17]
    NOSÉ Y, YOSHIKAWA M, MURABAYASHI S, et al. Development of rotary blood pump technology: past, present, and future [J]. Artificial Organs, 2000, 24(6): 412–420. DOI: 10.1046/j.1525-1594.2000.06634.x.
    [18]
    NOSÉ Y, MOTOMURA T. Is it a mistake to develop a totally implantable blood pump for destination therapy? [J]. Artificial Organs, 2005, 29(2): 93–94. DOI: 10.1111/j.1525-1594.2005.29031.x.
    [19]
    BEHBAHANI M, BEHR M, HORMES M, et al. A review of computational fluid dynamics analysis of blood pumps [J]. European Journal of Applied Mathematics, 2009, 20(4): 363–397. DOI: 10.1017/S0956792509007839.
    [20]
    NICHOLS W W, O'ROURKE M, VLACHOPOULOS C. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles [M]. 6th ed. London: CRC Press, 2011.
    [21]
    缪馥星, 王晖, 王礼立, 等. 血液-血管耦合特性与脉搏波传播特性的关系 [J]. 爆炸与冲击, 2020, 40(4): 031101. DOI: 10.11883/bzycj-2020-0082.

    MIAO Fuxing, WANG Hui, WANG Lili, et al. Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves [J]. Explosion and Shock Waves, 2020, 40(4): 031101. DOI: 10.11883/bzycj-2020-0082.
    [22]
    WANG LIN Y Y, WANG W K. A hemodynamics model to study the collective behavior of the ventricular-arterial system [J]. Journal of Applied Physics, 2013, 113(2): 024702. DOI: 10.1063/1.4775754.
    [23]
    WEBSTER J G. Design of pulse oximeters [M]. London: CRC Press, 1997.
  • Relative Articles

    [1]LI Wenjie, YANG Xiao, WAN Yu, DU Hongbo, XIAO Yi, YANG Shengfa. A critical safety wave pressure model of typical fishes under the action of underwater blasting shock waves[J]. Explosion And Shock Waves, 2023, 43(3): 034203. doi: 10.11883/bzycj-2022-0017
    [2]WANG Lili, WANG Hui, DING Yuanyuan, CHEN Xiabo, YANG Liming, GONG Wenbo, HUAN Shi, MIAO Fuxing. Exploration of experimental study on constitutive relations of pulse waves[J]. Explosion And Shock Waves, 2022, 42(12): 121101. doi: 10.11883/bzycj-2022-0434
    [3]MIAO Fuxing, WANG Hui, WANG Lili, HE Wenming, CHEN Xiabo, GONG Wenbo, DING Yuanyuan, HUAN Shi, XU Chong, XIE Yanqing, LU Yicheng, SHEN Lijun. Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves[J]. Explosion And Shock Waves, 2020, 40(4): 041101. doi: 10.11883/bzycj-2020-0082
    [4]Wang Lili, Hu Shisheng, Yang Liming, Dong Xinlong, Wang Hui. Talk about dynamic strength and damage evolution[J]. Explosion And Shock Waves, 2017, 37(2): 169-179. doi: 10.11883/1001-1455(2017)02-0169-11
    [5]TAO Wei-jun, HUAN Shi, HUANG Feng-lei, JIANG Guo-ping. Lateralrarefactionwaveeffectsonshockinitiation ofheterogeneouscondensedexplosives[J]. Explosion And Shock Waves, 2011, 31(4): 397-401. doi: 10.11883/1001-1455(2011)04-0397-05
    [6]ZHAO Kai, WANG Xiao-jun, LIU Fei, LUO Wen-chao. Propagationofstresswaveinporousmaterial[J]. Explosion And Shock Waves, 2011, 31(1): 107-112. doi: 10.11883/1001-1455(2011)01-0107-06
    [7]ZHU Yu-jian, YANG Ji-ming, J.H.S. Lee. Structure and behavior of the high-speed deflagration generated by a detonation wave passing through a perforated plate[J]. Explosion And Shock Waves, 2008, 28(2): 97-104. doi: 10.11883/1001-1455(2008)02-0097-08
    [8]PENG Qi-xian, LIU Jun, LI Ze-ren, DENG Xiang-yang, KONG Fan-long. An experimental study of increasing the driving power of explosive with restricted charge[J]. Explosion And Shock Waves, 2006, 26(5): 448-451. doi: 10.11883/1001-1455(2006)05-0448-04
    [9]SONG Li, HU Shi-sheng. Two-wave and three-wave method in SHPB data processing[J]. Explosion And Shock Waves, 2005, 25(4): 368-373. doi: 10.11883/1001-1455(2005)04-0368-06
  • Cited by

    Periodical cited type(5)

    1. 刘天俊,宋晓宾,邵欣欣,滕晶,齐向华. 系统辨证脉学中的信息点与信息流探析. 山东中医药大学学报. 2025(02): 169-174 .
    2. 徐仕侃,王晖,孙雪航,丁溢群,俞翠雯,陈一夫,张松松,陈霞波. 基于中医整体观探析糖尿病肾病Ⅲ、Ⅳ期患者脉搏波特征. 新中医. 2024(09): 82-87 .
    3. 陈琥颖,龚文波,贾梦娜,丁溢群,陈一夫,廖晟极. 2型糖尿病气虚证和阴虚证常见脉象的脉搏波特征研究. 中医临床研究. 2024(32): 7-11 .
    4. 丁溢群,龚文波,范佳莹. 基于中医整体观的脉搏波理论探析阴虚型糖尿病患者脉搏波参数特征分析. 浙江中西医结合杂志. 2023(12): 1108-1110 .
    5. 王礼立,王晖,丁圆圆,陈霞波,杨黎明,龚文波,浣石,缪馥星. 脉搏波本构关系实验研究的探索. 爆炸与冲击. 2022(12): 3-12 . 本站查看

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (1850) PDF downloads(144) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return