Citation: | JING Lin, LIU Kai, WANG Chengquan. Recentadvances in the collision passive safety of trains andimpact biological damage of drivers and passengers[J]. Explosion And Shock Waves, 2021, 41(12): 121405. doi: 10.11883/bzycj-2021-0330 |
[1] |
余也艺. 高速运输系统安全 [M]. 北京: 中国铁道出版社, 1996.
|
[2] |
雷成, 肖守讷, 罗世辉, 等. 轨道车辆耐碰撞性研究进展 [J]. 铁道学报, 2013, 35(1): 31–40. DOI: 10.3969/j.issn.1001-8360.2013.01.005.
LEI C, XIAO S N, LUO S H, et al. State-of-the-art research development of rail vehicles crashworthiness [J]. Journal of the China Railway Society, 2013, 35(1): 31–40. DOI: 10.3969/j.issn.1001-8360.2013.01.005.
|
[3] |
ZHU T, XIAO S N, LEI C, et al. Rail vehicle crashworthiness based on collision energy management: an overview [J]. International Journal of Rail Transportation, 2021, 9(2): 101–131. DOI: 10.1080/23248378.2020.1777908.
|
[4] |
GAO G J, ZHUO T Y, GUAN W Y. Recent research development of energy-absorption structure and application for railway vehicles [J]. Journal of Central South University, 2020, 27(4): 1012–1038. DOI: 10.1007/s11771-020-4349-3.
|
[5] |
GUAN WY, GAO G J, YU Y, et al. Crashworthiness analysis and multi-objective optimization of expanding circular tube energy absorbers with cylindrical anti-clamber under eccentric loading for subway vehicles [J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1711–1729. DOI: 10.1007/s00158-019-02427-z.
|
[6] |
LI Z X, MA W, YAO S G, et al. Crashworthiness performance of corrugation-reinforced multicell tubular structures [J]. International Journal of Mechanical Sciences, 2021, 190: 106038. DOI: 10.1016/j.ijmecsci.2020.106038.
|
[7] |
Railway Group Standard. Requirements for rail vehicle structures: GM/RT 2100 [S]. London: Rail Safety and Standards Board Limited, 2012.
|
[8] |
张振淼, 逄增祯. 轨道车辆碰撞能量吸收装置原理及结构设计(待续) [J]. 国外铁道车辆, 2001, 38(3): 13–19. DOI: 10.3969/j.issn.1002-7610.2001.03.004.
ZHAGN Z M, PANG Z Z. Principles and structure design of collision energy absorption equipment for rail cars (to be continued) [J]. Foreign Rolling Stock, 2001, 38(3): 13–19. DOI: 10.3969/j.issn.1002-7610.2001.03.004.
|
[9] |
BSI Standards. Railway applications—Crashworthiness requirements for railway vehicle bodies: BSEN 15227: 2008+A1: 2010 [S]. Brussels: The British Standards Institution, 2011.
|
[10] |
TYRELL D, SEVERSON K, PERLMAN B. An overview of passenger equipment full scale impact tests: results to date [C] //Proceedings of the World Congress on Railway Research. Cologne, Germany: World Congress on Railway Research, 2001.
|
[11] |
TYRELL D, SEVERSON K, PERLMAN A B. Single passenger rail car impact test. Volume Ⅰ: overview and selected results: DOT/FRA/ORD-00/02.1 [R]. Washington: U. S. Department of TransportationFederal RailroadAdministration, 2000.
|
[12] |
VANINGEN-DUNN C. Single passenger rail car impact test. Volume Ⅱ: summary of occupant protection program: DOT/FRA/ORD-00/02.2 [R]. Washington: U. S. Department of TransportationFederal RailroadAdministration, 2000.
|
[13] |
TYRELL D, SEVERSON K, ZOLOCK J, et al. Passenger rail two-car impact test. Volume Ⅰ: overview and selected results: DOT/FRA/ORD-01/22.1 [R]. Washington: U. S. Department of TransportationFederal RailroadAdministration, 2002.
|
[14] |
TYRELL D, JACOBSEN K, MARTINEZ E, et al. Train-to-train impact test of crash energy management passenger rail equipment: structural results [C] // Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago: ASME, 2006. DOI: 10.1115/IMECE2006-13597.
|
[15] |
畑弘敏, 刘克鲜, 王凤洲. 运用碰撞仿真技术进行提高铁道车辆安全性的研究 [J]. 国外铁道车辆, 2004, 41(6): 22–27,31. DOI: 10.3969/j.issn.1002-7610.2004.06.007.
TIAN H M, LIU K X, WANG F Z. Research on improvement of rolling stock safety with the collision simulation technology [J]. Foreign Rolling Stock, 2004, 41(6): 22–27,31. DOI: 10.3969/j.issn.1002-7610.2004.06.007.
|
[16] |
谢素超, 田红旗, 姚松. 车辆吸能部件的碰撞试验与数值仿真 [J]. 交通运输工程学报, 2008, 8(3): 1–5. DOI: 10.3321/j.issn:1671-1637.2008.03.001.
XIE S C, TIAN H Q, YAO S. Impacting experiment and numerical simulation of energy-absorbing component of vehicles [J]. Journal of Traffic and Transportation Engineering, 2008, 8(3): 1–5. DOI: 10.3321/j.issn:1671-1637.2008.03.001.
|
[17] |
刘金朝, 房加志, 王成国, 等. 铁道客车大变形碰撞仿真研究 [J]. 中国铁道科学, 2004, 25(6): 1–8. DOI: 10.3321/j.issn:1001-4632.2004.06.001.
LIU J Z, FANG J Z, WANG C G, et al. Simulation research on finite deformation crashworthiness of railway passenger car [J]. China Railway Science, 2004, 25(6): 1–8. DOI: 10.3321/j.issn:1001-4632.2004.06.001.
|
[18] |
李兰. 城轨车辆耐碰撞结构设计及其乘员安全数字仿真研究 [D]. 北京: 铁道科学研究院, 2007.
|
[19] |
张乐乐, 张啸雨, 崔进, 等. 地铁头车车体耐撞性仿真分析 [J]. 铁道学报, 2012, 34(3): 22–27. DOI: 10.3969/j.issn.1001-8360.2012.03.004.
ZHANG L L, ZHANG X Y, CUI J, et al. Numerical analysis on crashworthiness of subway head-car body [J]. Journal of the China Railway Society, 2012, 34(3): 22–27. DOI: 10.3969/j.issn.1001-8360.2012.03.004.
|
[20] |
卫亮, 张乐乐, 崔进, 等. 地铁碰撞事故中站姿假人的响应仿真与损伤预测 [J]. 铁道学报, 2015, 37(1): 16–23. DOI: 10.3969/j.issn.1001-8360.2015.01.003.
WEI L, ZHANG L L, CUI J, et al. Response simulation and injury prediction of standing dummy in a subway collision [J]. Journal of the China Railway Society, 2015, 37(1): 16–23. DOI: 10.3969/j.issn.1001-8360.2015.01.003.
|
[21] |
王存义, 张乐乐, 卫亮, 等. 基于坐姿假人的地铁乘员二次碰撞损伤影响分析 [J]. 铁道学报, 2015, 37(3): 14–22. DOI: 10.3969/j.issn.1001-8360.2015.03.003.
WANG C Y, ZHANG L L, WEI L, et al. Analysis of secondary impact on passenger injuries in a subway vehicle based on sitting dummy [J]. Journal of the China Railway Society, 2015, 37(3): 14–22. DOI: 10.3969/j.issn.1001-8360.2015.03.003.
|
[22] |
WANG W B, REN L H, ZHOU H C, et al. Energy absorption configuration of crashworthy metro train [J]. Advanced Materials Research, 2012, 466/467: 724–728. DOI: 10.4028/www.scientific.net/AMR.466-467.724.
|
[23] |
WALDECK H, 肖守讷. ICE动力车碰撞仿真 [J]. 控制与信息技术, 1996(4): 26–32. DOI: 10.13889/j.issn.2095-3631.1996.04.006.
WALDECK H, XIAO S N. ICE powered car crash simulation [J]. Control and Information Technology, 1996(4): 26–32. DOI: 10.13889/j.issn.2095-3631.1996.04.006.
|
[24] |
张志新, 肖守讷, 阳光武, 等. 高速列车乘员碰撞安全性研究 [J]. 铁道学报, 2013, 35(10): 24–32. DOI: 10.3969/j.issn.1001-8360.2013.10.004.
ZHAGN Z X, XIAO S N, YANG G W, et al. Research on collision safety of high-speed train crews & passengers [J]. Journal of the China Railway Society, 2013, 35(10): 24–32. DOI: 10.3969/j.issn.1001-8360.2013.10.004.
|
[25] |
雷成, 肖守讷, 罗世辉. 基于显式有限元的高速列车吸能装置吸能原理研究 [J]. 铁道机车车辆, 2012, 32(2): 1–4. DOI: 10.3969/j.issn.1008-7842.2012.02.001.
LEI C, XIAO S N, LUO S H. Research on the energy-absorbing theory of high speed train energy-absorbing component based on the explicit finite element [J]. Railway Locomotive & Car, 2012, 32(2): 1–4. DOI: 10.3969/j.issn.1008-7842.2012.02.001.
|
[26] |
丁兆洋, 郑志军, 虞吉林. 列车分布式吸能系统的波传播特性和参数分析 [J]. 爆炸与冲击, 2019, 39(3): 035101. DOI: 10.11883/bzycj-2018-0053.
DING Z Y, ZHENG Z J, YU J L. Wave propagation characteristics and parameter analysis of the distributed energy absorption system of trains [J]. Explosion and Shock Waves, 2019, 39(3): 035101. DOI: 10.11883/bzycj-2018-0053.
|
[27] |
腾讯网. 日本40年来最严重铁路事故—福知山线脱轨事故 [EB/OL]. (2021-04-26) [2021-12-8]. https://new.qq.com/rain/a/20210426V0CB5C00.
|
[28] |
央视网. 追问7·23动车追尾事故 [EB/OL]. (2011-07-27) [2021-12-8]. https://tv.cctv.com/2011/07/27/VIDE1336928346085433.shtml.
|
[29] |
央视网. 瑞士: 发生火车相撞事故, 多人受伤 [EB/OL]. (2015-02-21) [2021-12-8]. http://tv.cctv.com/2015/02/21/VIDE1424453038742862.shtml.
|
[30] |
凤凰网. 德国两辆火车迎面相撞, 死伤者多达上百人 [EB/OL]. (2016-02-09) [2021-12-8]. https://news.ifeng.com/a/20160209/47400747_0.shtml.
|
[31] |
央视网. 美国南卡罗来纳州发生列车相撞事故, 2人死亡 [EB/OL]. (2018-02-05) [2021-12-8]. http://tv.cctv.com/2018/02/05/VIDEqbGvWMYAeF5O1r18sDzs180205.shtml.
|
[32] |
腾讯网. 台湾列车脱轨事故[EB/OL]. (2021-04-19) [2021-12-8]. https://new.qq.com/rain/a/20210419a0ek7y00.
|
[33] |
FORSBERG R, BJÖRNSTIG U. One hundred years of railway disasters and recent trends [J]. Prehospital and Disaster Medicine, 2011, 26(5): 367–373. DOI: 10.1017/S1049023X1100639X.
|
[34] |
维基百科. 中华人民共和国铁路事故列表 [EB/OL]. (2021-06-04)[2021-07-27].https://zh.wikipedia.org/wiki/%E4%B8%AD%E5%8D%8E%E4%BA%BA%E6%B0%91%E5%85%B1%E5%92%8C%E5%9B%BD%E9%93%81%E8%B7%AF%E4%BA%8B%E6%95%85%E5%88%97%E8%A1%A8.
|
[35] |
闻浩, 林露阳, 陈大庆, 等. “7·23”温州动车事故存活伤员损伤特点及救治分析 [J]. 中华急诊医学杂志, 2011, 20(12): 1248–1250. DOI: 10.3760/cma.j.issn.1671-0282.2011.12.005.
WEN H, LIN L Y, CHEN D Q, et al. Features of survived casualties and treatment after “July23” EMU railway accident at Wenzhou station [J]. Chinese Journal of Emergency Medicine, 2011, 20(12): 1248–1250. DOI: 10.3760/cma.j.issn.1671-0282.2011.12.005.
|
[36] |
ZHANG H H, PENG Y, HOU L, et al. Multistage impact energy distribution for whole vehicles in high-speed train collisions: modeling and solution methodology [J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2486–2499. DOI: 10.1109/TII.2019.2936048.
|
[37] |
DIAS J P, PEREIRA M S. Optimization methods for crashworthiness design using multibody models [J]. Computers & Structures, 2004, 82(17/18/19): 1371–1380. DOI: 10.1016/j.compstruc.2004.03.032.
|
[38] |
ZHU T, XIAO S N, HU G Z, et al. Crashworthiness analysis of the structure of metro vehicles constructed from typical materials and the lumped parameter model of frontal impact [J]. Transport, 2019, 34(1): 75–88. DOI: 10.3846/transport.2019.7552.
|
[39] |
李松晏, 郑志军, 虞吉林. 高速列车吸能结构设计和耐撞性分析 [J]. 爆炸与冲击, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.
LI S Y, ZHENG Z J, YU J L. Energy-absorbing structure design and crashworthiness analysis of high-speed trains [J]. Explosion and Shock Waves, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.
|
[40] |
KOO J S, YOUN Y H. Crashworthy design and evaluation on the front-end structure of Korean high speed train [J]. International Journal of Automotive Technology, 2004, 5(3): 173–180. DOI: 10.1109/TVT.2004.832409.
|
[41] |
XUE X, SCHMID F, SMITH R A. Analysis of the structural characteristics of an intermediate rail vehicle and their effect on vehicle crash performance [J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2007, 221(3): 339–352. DOI: 10.1243/09544097jrrt77.
|
[42] |
XUE X, SCHMID F, SMITH R A. A study of modelling approaches for rail vehicle collision behaviour [J]. International Journal of Crashworthiness, 2004, 9(5): 515–525. DOI: 10.1533/ijcr.2004.0307.
|
[43] |
周和超, 徐世洲, 詹军, 等. 基于有限元和多刚体动力学联合仿真技术的列车碰撞爬车现象研究 [J]. 机械工程学报, 2017, 53(12): 166–171. DOI: 10.3901/JME.2017.12.166.
ZHOU H C, XU S Z, ZHAN J, et al. Research on the overriding phenomenon during train collision based on FEM and MBS joint simulation [J]. Journal of Mechanical Engineering, 2017, 53(12): 166–171. DOI: 10.3901/JME.2017.12.166.
|
[44] |
HECHT M. 有轨电车和轻轨车辆的防碰撞性 [J]. 国外铁道车辆, 2005, 42(5): 39–41. DOI: 10.3969/j.issn.1002-7610.2005.05.008.
HECHT M. The crashworthiness of tramcar and LRV [J]. Foreign Rolling Stock, 2005, 42(5): 39–41. DOI: 10.3969/j.issn.1002-7610.2005.05.008.
|
[45] |
王万静, 梁建英, 崔洪举, 等. 铁道车辆车体撞击试验台建设必要性分析及建议 [J]. 国外铁道车辆, 2013, 50(6): 1–6. DOI: 10.3969/j.issn.1002-7610.2013.06.001.
WANG W J, LIANG J Y, CUI H J, et al. The necessity analysis of construction of the impact test bench for rolling stock carbodies [J]. Foreign Rolling Stock, 2013, 50(6): 1–6. DOI: 10.3969/j.issn.1002-7610.2013.06.001.
|
[46] |
中南大学高性能复杂制造国家重点实验室. “列车碰撞试验系统构建与安全评估理论”研究进展 [EB/OL]. (2018-04-19)[2021-07-27]. https://hpcm.csu.edu.cn/info/1016/1014.htm.
|
[47] |
XU P, YANG C X, PENG Y, et al. Crash performance and multi-objective optimization of a gradual energy-absorbing structure for subway vehicles [J]. International Journal of Mechanical Sciences, 2016, 107: 1–12. DOI: 10.1016/j.ijmecsci.2016.01.001.
|
[48] |
刘志祥, 王万静, 张志强, 等. 基于电机牵引方式的轨道车辆碰撞试验台研制 [J]. 中国基础科学, 2018, 20(6): 11–14,24. DOI: 10.3969/j.issn.1009-2412.2018.06.003.
LIU Z X, WANG W J, ZHANG Z Q, et al. Research and development of the crash test bench for railway vehicles based on motor traction [J]. China Basic Science, 2018, 20(6): 11–14,24. DOI: 10.3969/j.issn.1009-2412.2018.06.003.
|
[49] |
中国中车. 76km/h ! 中车完成高速列车最高速实车对撞试验[EB/OL]. (2019-09-27)[2021-11-03]. https://mp.weixin.qq.com/s/UwbHZvtvtdhqHAg_8M7www.
|
[50] |
高广军, 于尧, 关维元. 用于碰撞实验的列车缩比等效模型构建方法及其系统: CN107798171A [P]. 2018-03-13.
|
[51] |
LU S S, XU P, YAN K B, et al. A force/stiffness equivalence method for the scaled modelling of a high-speed train head car [J]. Thin-Walled Structures, 2019, 137: 129–142. DOI: 10.1016/j.tws.2019.01.016.
|
[52] |
YU Y, GAO G J, GUAN W Y, et al. Scale similitude rules with acceleration consistency for trains collision [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(10): 2466–2480. DOI: 10.1177/0954409718773562.
|
[53] |
JONES N. Structural impact [M]. Cambridge: Cambridge University Press, 2010. DOI: 10.1017/CBO9780511624285.
|
[54] |
田红旗, 卢执中. 列车撞击动力学建模研究 [J]. 铁道车辆, 1997, 35(4): 8–11.
TIAN H Q, LU Z Z. High speed trains modelling study on train impact dynamics [J]. Rolling Stock, 1997, 35(4): 8–11.
|
[55] |
卢毓江, 肖守讷, 朱涛, 等. 列车纵向-垂向碰撞动力学耦合模型建模与研究 [J]. 铁道学报, 2014, 36(12): 6–13. DOI: 10.3969/j.issn.1001-8360.2014.12.002.
LU Y J, XIAO S N, ZHU T, et al. Construction of dynamic coupling model of longitudinal-vertical train crash [J]. Journal of the China Railway Society, 2014, 36(12): 6–13. DOI: 10.3969/j.issn.1001-8360.2014.12.002.
|
[56] |
DING Z Y, ZHENG Z J, YU J L. A wave propagation model of distributed energy absorption system for trains [J]. International Journal of Crashworthiness, 2019, 24(5): 508–522. DOI: 10.1080/13588265.2018.1479482.
|
[57] |
王文斌. 轨道车辆耐碰撞结构及乘员安全防护技术研究[D]. 上海: 同济大学, 2006.
|
[58] |
SCHOLES A, LEWIS J H. Development of crashworthiness for railway vehicle structures [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 1–16. DOI: 10.1243/PIME_PROC_1993_207_222_02.
|
[59] |
SCHOLES A. Railway passenger vehicle design loads and structural crashworthiness [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 1987, 201(3): 201–207. DOI: 10.1243/PIME_PROC_1987_201_177_02.
|
[60] |
HAN H S, KOO J S. Simulation of train crashes in three dimensions [J]. Vehicle System Dynamics, 2003, 40(6): 435–450. DOI: 10.1076/vesd.40.6.435.17906.
|
[61] |
MAYVILLE R, RANCATORE R, TEGELER L. Investigation and simulation of lateral buckling in trains [C] // Proceedings of the 1999 ASME/IEEE Joint Railroad Conference. Dallas: IEEE, 1999. DOI: 10.1109/RRCON.1999.762407.
|
[62] |
KIRKPATRICK S W, SCHROEDER M, SIMONS J W. Evaluation of passenger rail vehicle crashworthiness [J]. International Journal of Crashworthiness, 2001, 6(1): 95–106. DOI: 10.1533/cras.2001.0165.
|
[63] |
BAYKASOGLU C, MUGAN A, SUNBULOGLU E, et al. Rollover crashworthiness analysis of a railroad passenger car [J]. International Journal of Crashworthiness, 2013, 18(5): 492–501. DOI: 10.1080/13588265.2013.809645.
|
[64] |
CUARTERO J, LIZARANZU M, CASTEJÓN L, et al. Evaluation of passenger railroad car roll over crashworthiness [J]. International Journal of Crashworthiness, 2006, 11(5): 419–424. DOI: 10.1533/ijcr.2005.0120.
|
[65] |
KOO J S, CHOI S Y. Theoretical development of a simplified wheelset model to evaluate collision-induced derailments of rolling stock [J]. Journal of Sound and Vibration, 2012, 331(13): 3172–3198. DOI: 10.1016/j.jsv.2012.02.014.
|
[66] |
WU X W, CHI M R, GAO H. The study of post-derailment dynamic behavior of railway vehicle based on running tests [J]. Engineering Failure Analysis, 2014, 44: 382–399. DOI: 10.1016/j.engfailanal.2014.05.021.
|
[67] |
WANG W, LI G X. Development of high-speed railway vehicle derailment simulation-Part Ⅱ: exploring the derailment mechanism [J]. Engineering Failure Analysis, 2012, 24: 93–111. DOI: 10.1016/j.engfailanal.2012.02.001.
|
[68] |
LING L, DHANASEKAR M, WANG K Y, et al. Collision derailments on bridges containing ballastless slab tracks [J]. Engineering Failure Analysis, 2019, 105: 869–882. DOI: 10.1016/j.engfailanal.2019.07.042.
|
[69] |
XU J M, WANG J, WANG P, et al. Study on the derailment behaviour of a railway wheelset with solid axles in a railway turnout [J]. Vehicle System Dynamics, 2020, 58(1): 123–143. DOI: 10.1080/00423114.2019.1566558.
|
[70] |
ZHOU H C, WANG W B, HECHT M. Three-dimensional derailment analysis of a crashed city tram [J]. Vehicle System Dynamics, 2013, 51(8): 1200–1215. DOI: 10.1080/00423114.2013.790553.
|
[71] |
KOO J S, CHO H J. A method to predict the derailment of rolling stock due to collision using a theoretical wheelset derailment model [J]. Multibody System Dynamics, 2012, 27(4): 403–422. DOI: 10.1007/s11044-011-9270-y.
|
[72] |
CHO H J, KOO J S. A numerical study of the derailment caused by collision of a rail vehicle using a virtual testing model [J]. Vehicle System Dynamics, 2012, 50(1): 79–108. DOI: 10.1080/00423114.2011.563860.
|
[73] |
YAO S G, ZHU H F, YAN K B, et al. The derailment behaviour and mechanism of a subway train under frontal oblique collisions [J]. International Journal of Crashworthiness, 2021, 26(2): 133–146. DOI: 10.1080/13588265.2019.1692506.
|
[74] |
LING L, DHANASEKAR M, THAMBIRATNAM D P. Frontal collision of trains onto obliquely stuck road trucks at level crossings: derailment mechanisms and simulation [J]. International Journal of Impact Engineering, 2017, 100: 154–165. DOI: 10.1016/j.ijimpeng.2016.11.002.
|
[75] |
LING L, DHANASEKAR M, THAMBIRATNAM D P, et al. Lateral impact derailment mechanisms, simulation and analysis [J]. International Journal of Impact Engineering, 2016, 94: 36–49. DOI: 10.1016/j.ijimpeng.2016.04.001.
|
[76] |
LING L, DHANASEKAR M, THAMBIRATNAM D P. A passive road-rail crossing design to minimise wheel-rail contact failure risk under frontal collision of trains onto stuck trucks [J]. Engineering Failure Analysis, 2017, 80: 403–415. DOI: 10.1016/j.engfailanal.2017.07.003.
|
[77] |
LING L, GUAN Q H, DHANASEKAR M, et al. Dynamic simulation of train-truck collision at level crossings [J]. Vehicle System Dynamics, 2017, 55(1): 1–22. DOI: 10.1080/00423114.2016.1240811.
|
[78] |
BAE H U, YUN K M, LIM N H. Containment capacity and estimation of crashworthiness of derailment containment walls against high-speed trains [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(3): 680–696. DOI: 10.1177/0954409716684663.
|
[79] |
BAE H U, YUN K M, MOON J, et al. Impact force evaluation of the derailment containment wall for high-speed train through a collision simulation [J]. Advances in Civil Engineering, 2018, 2018: 2626905. DOI: 10.1155/2018/2626905.
|
[80] |
SONG I H, KIM J W, KOO J S, et al. Modeling and simulation of collision-causing derailment to design the derailment containment provision using a simplified vehicle model [J]. Applied Sciences, 2019, 10(1): 118. DOI: 10.3390/app10010118.
|
[81] |
International Union of Railways. Loadings of coach bodies and their components: UIC-566 [S]. Paris: International Union of Railways, 1990.
|
[82] |
BSI Standards. 2014 Railway applications—structural requirements of railway vehicle bodies–part 1: locomotives and passenger rolling stock (and alternative method for freight wagons): BS EN 12663-1: 2010+A1 [S]. Brussels: The British Standards Institution, 2015.
|
[83] |
BSI Standards. 2010 Railway applications-structural requirements of railway vehicle bodies–part 2: freight wagons: BS EN 12663-2 [S]. Brussels: The British Standards Institution, 2010.
|
[84] |
European Union. Technical specification for interoperability (TSI) [S]. Brussels: Official Journal of the European Union, 2008.
|
[85] |
ATOC Vehicle Standard. AV/ST9001 Vehicle interior crashworthiness [S]. London: Association of Train Operating Companies, 2002.
|
[86] |
Federal Railroad Administration. 49 CFR Part 229Railroad locomotive safety standards [S]. Florida: U. S. Department of Transportation Federal Railroad Administration, 2006.
|
[87] |
Federal Railroad Administration. 49 CFR Part 238Passenger equipment safety standards [S]. Florida: U. S. Department of Transportation Federal Railroad Administration, 2003.
|
[88] |
Association of American Railroads. Standard S-580: mechanical section-manual of standards and recommended practices, locomotive crashworthiness requirements [S]. Washington: Association of American Railroads, 1994.
|
[89] |
American Public Transportation Association. Manual of standards and recommended practices for passenger rail equipment [R]. Washington: American Public Transportation Association, 1999.
|
[90] |
Passenger Rail Equipment Safety Standards (PRESS) Construction and Structural Working Group. Standard for the design and construction of passenger railroad rolling stock: APTA SS-C& S-034-99 [S]. Washington: American Public Transportation Association, 2000.
|
[91] |
国家铁路局. 动车组车体耐撞性要求与验证规范:TB/T 3500-2018[S]. 北京: 中国铁道出版社, 2018.
|
[92] |
国家铁路局. 机车车辆碰撞试验测试方法:TB/T 3501-2018[S]. 北京: 中国铁道出版社, 2018.
|
[93] |
SHAO H, XU P, YAO S G, et al. Improved multibody dynamics for investigating energy dissipation in train collisions based on scaling laws [J]. Shock and Vibration, 2016, 2016: 3084052. DOI: 10.1155/2016/3084052.
|
[94] |
CHEN D. Derailment risk due to coupler jack-knifing under longitudinal buff force [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224(5): 483–490. DOI: 10.1243/09544097JRRT363.
|
[95] |
EL-SIBAIE M. Recent advancements in buff and draft testing techniques [C] // Proceedings of the 1993 IEEE/ASME Joint Railroad Conference. Pittsburgh: IEEE, 1993: 115-119. DOI: 10.1109/rrcon.1993.292955.
|
[96] |
LEWIS J H, RASAIAH W G, SCHOLES A. Validation of measures to improve rail vehicle crashworthiness [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1996, 210(2): 73–85. DOI: 10.1243/PIME_PROC_1996_210_330_02.
|
[97] |
JAHROMI A G, HATAMI H. Energy absorption performance on multilayer expanded metal tubes under axial impact [J]. Thin-Walled Structures, 2017, 116: 1–11. DOI: 10.1016/j.tws.2017.03.005.
|
[98] |
HATAMI H, RAD M S, JAHROMI A G. A theoretical analysis of the energy absorption response of expanded metal tubes under impact loads [J]. International Journal of Impact Engineering, 2017, 109: 224–239. DOI: 10.1016/j.ijimpeng.2017.06.009.
|
[99] |
NOURI M D, HATAMI H, JAHROMI A G. Experimental and numerical investigation of expanded metaltube absorber under axial impact loading [J]. Structural Engineering and Mechanics, 2015, 54(6): 1245–1266. DOI: 10.12989/sem.2015.54.6.1245.
|
[100] |
HATAMI H, NOURI M D. Experimental and numerical investigation of lattice-walled cylindrical shell under low axial impact velocities [J]. Latin American Journal of Solids and Structures, 2015, 12(10): 1950–1971. DOI: 10.1590/1679-78251919.
|
[101] |
YANG J L, LUO M, HUA Y L, et al. Energy absorption of expansion tubes using a conical–cylindrical die: experiments and numerical simulation [J]. International Journal of Mechanical Sciences, 2010, 52(5): 716–725. DOI: 10.1016/j.ijmecsci.2009.11.015.
|
[102] |
QI C, YANG S, DONG F L. Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading [J]. Thin-Walled Structures, 2012, 59: 103–119. DOI: 10.1016/j.tws.2012.05.008.
|
[103] |
GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminum tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. DOI: 10.1016/S0020-7403(01)00031-5.
|
[104] |
REDDY T Y. Guist and marble revisited—on the natural knuckle radius in tube inversion [J]. International Journal of Mechanical Sciences, 1992, 34(10): 761–768. DOI: 10.1016/0020-7403(92)90040-N.
|
[105] |
REID S R, HARRIGAN J J. Transient effects in the quasi-static and dynamic internal inversion and nosing of metal tubes [J]. International Journal of Mechanical Sciences, 1998, 40(2/3): 263–280. DOI: 10.1016/S0020-7403(97)00054-4.
|
[106] |
SHAKERI M, SALEHGHAFFARI S, MIRZAEIFAR R. Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation [J]. International Journal of Crashworthiness, 2007, 12(5): 493–501. DOI: 10.1080/13588260701483540.
|
[107] |
AL-ABRI O S, PERVEZ T. Structural behavior of solid expandable tubular undergoes radial expansion process–Analytical, numerical, and experimental approaches [J]. International Journal of Solids and Structures, 2013, 50(19): 2980–2994. DOI: 10.1016/j.ijsolstr.2013.05.013.
|
[108] |
SEIBI A C, BARSOUM I, MOLKI A. Experimental and numerical study of expanded aluminum and steel tubes [J]. Procedia Engineering, 2011, 10: 3049–3055. DOI: 10.1016/j.proeng.2011.04.505.
|
[109] |
LI J, GAO G J, DONG H P, et al. Study on the energy absorption of the expanding–splitting circular tube by experimental investigations and numerical simulations [J]. Thin-Walled Structures, 2016, 103: 105–114. DOI: 10.1016/j.tws.2016.01.031.
|
[110] |
YAN J L, YAO S G, XU P, et al. Theoretical prediction and numerical studies of expanding circular tubes as energy absorbers [J]. International Journal of Mechanical Sciences, 2016, 105: 206–214. DOI: 10.1016/j.ijmecsci.2015.11.022.
|
[111] |
KIM J S, HUH H, KWON T S. Crashworthiness design of the shear bolts for light collision safety devices [J]. International Journal of Modern Physics B, 2008, 22(31–32): 5603–5608. DOI: 10.1142/S0217979208050887.
|
[112] |
ZHU T, YANG B Z, YANG C, et al. The mechanism for the coupler and draft gear and its influence on safety during a train collision [J]. Vehicle System Dynamics, 2018, 56(9): 1375–1393. DOI: 10.1080/00423114.2017.1413198.
|
[113] |
DUNCAN I B, WEBB P A. The longitudinal behaviour of heavy haul trains using remote locomotives [C] // Proceedings of theFourth International Heavy Haul Railway Conference. Brisbane: Institution of Engineers, 1989: 587-590.
|
[114] |
LU G. Collision behaviour of crashworthy vehicles in rakes [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1999, 213(3): 143–160. DOI: 10.1243/0954409991531100.
|
[115] |
MILHO J F, AMBRÓSIO J A C, PEREIRA M F O S. Validated multibody model for train crash analysis [J]. International Journal of Crashworthiness, 2003, 8(4): 339–352. DOI: 10.1533/ijcr.2003.0242.
|
[116] |
庞艳凤, 陈凯. 国内城轨车辆车钩缓冲装置应用情况和统型设想 [J]. 铁道车辆, 2011, 49(1): 22–25. DOI: 10.3969/j.issn.1002-7602.2011.01.007.
PANG Y F, CHEN K. Application of coupler draft gears on domestic urban rail vehicles and the idea of unifying models [J]. Rolling Stock, 2011, 49(1): 22–25. DOI: 10.3969/j.issn.1002-7602.2011.01.007.
|
[117] |
ZHOU H C, MEI M S, ZHANG J M, et al. Investigations on the vertical buckling of railway vehicle's anti-climber [J]. International Journal of Crashworthiness, 2021, 26(2): 171–181. DOI: 10.1080/13588265.2019.1701354.
|
[118] |
YANG C, LI Q, XIAO S N, et al. On the overriding issue of train front end collision in rail vehicle dynamics [J]. Vehicle System Dynamics, 2018, 56(4): 506–528. DOI: 10.1080/00423114.2017.1394472.
|
[119] |
YAO S G, XIAO X L, XU P, et al. The impact performance of honeycomb-filled structures under eccentric loading for subway vehicles [J]. Thin-Walled Structures, 2018, 123: 360–370. DOI: 10.1016/j.tws.2017.10.031.
|
[120] |
ZHOU H C, WANG W B, HECHT M. Three-dimensional override analysis of crashed railway multiple units [J]. Vehicle System Dynamics, 2012, 50(4): 663–674. DOI: 10.1080/00423114.2011.631552.
|
[121] |
GAO G J, GUAN W Y, LI J, et al. Experimental investigation of an active–passive integration energy absorber for railway vehicles [J]. Thin-Walled Structures, 2017, 117: 89–97. DOI: 10.1016/j.tws.2017.03.029.
|
[122] |
GUAN W Y, GAO G J, LI J, et al. Crushing analysis and multi-objective optimization of a cutting aluminum tube absorber for railway vehicles under quasi-static loading [J]. Thin-Walled Structures, 2018, 123: 395–408. DOI: 10.1016/j.tws.2017.11.031.
|
[123] |
岳伟玲. 轨道车辆拉削式防爬器吸能特性的研究[D]. 广州: 华南理工大学, 2014.
|
[124] |
张云峰, 杭志洲, 方炅任. 刨削式与整体型蜂窝式车辆防爬器对撞性能分析 [J]. 城市轨道交通研究, 2020, 23(2): 26–30. DOI: 10.16037/j.1007-869x.2020.02.007.
ZHANG Y F, HANG Z Z, FANG J R. Collision performance analysis of planing and integral honeycombing anti-climbs for vehicles [J]. Urban Mass Transit, 2020, 23(2): 26–30. DOI: 10.16037/j.1007-869x.2020.02.007.
|
[125] |
BAYKASOĞLU C, SÜNBÜLOĞLU E, BOZDAĞ S E, et al. Railroad passenger car collision analysis and modifications for improved crashworthiness [J]. International Journal of Crashworthiness, 2011, 16(3): 319–329. DOI: 10.1080/13588265.2011.566475.
|
[126] |
XUE X, SMITH R A, SCHMID F. Analysis of crush behaviours of a rail cab car and structural modifications for improved crashworthiness [J]. International Journal of Crashworthiness, 2005, 10(2): 125–136. DOI: 10.1533/ijcr.2005.0332.
|
[127] |
XIE S C, LIANG X F, ZHOU H, et al. Crashworthiness optimisation of the front-end structure of the lead car of a high-speed train [J]. Structural and Multidisciplinary Optimization, 2016, 53(2): 339–347. DOI: 10.1007/s00158-015-1332-y.
|
[128] |
XIE S C, LIANG X F, ZHOU H. Design and analysis of a composite energy-absorbing structure for use on railway vehicles [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(3): 825–839. DOI: 10.1177/0954409714566058.
|
[129] |
LI B H, LU Z J, YAN K B, et al. Experimental study of a honeycomb energy-absorbing device for high-speed trains [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1170–1183. DOI: 10.1177/0954409719882564.
|
[130] |
PENG Y, DENG W Y, XU P, et al. Study on the collision performance of a composite energy-absorbing structure for subway vehicles [J]. Thin-Walled Structures, 2015, 94: 663–672. DOI: 10.1016/j.tws.2015.05.016.
|
[131] |
SHARIFI S, SHAKERI M, FAKHARI H E, et al. Experimental investigation of bitubal circular energy absorbers under quasi-static axial load [J]. Thin-Walled Structures, 2015, 89: 42–53. DOI: 10.1016/j.tws.2014.12.008.
|
[132] |
RAHI A. Controlling energy absorption capacity of combined bitubular tubes under axial loading [J]. Thin-Walled Structures, 2018, 123: 222–231. DOI: 10.1016/j.tws.2017.11.032.
|
[133] |
VINAYAGAR K, KUMAR A S. Crashworthiness analysis of double section bi-tubular thin-walled structures [J]. Thin-Walled Structures, 2017, 112: 184–193. DOI: 10.1016/j.tws.2016.12.008.
|
[134] |
AZIMI M B, ASGARI M. A new bi-tubular conical-circular structure for improving crushing behavior under axial and oblique impacts [J]. International Journal of Mechanical Sciences, 2016, 105: 253–265. DOI: 10.1016/j.ijmecsci.2015.11.012.
|
[135] |
FANG J G, GAO Y K, SUN G Y, et al. Crashworthiness design of foam-filled bitubal structures with uncertainty [J]. International Journal of Non-Linear Mechanics, 2014, 67: 120–132. DOI: 10.1016/j.ijnonlinmec.2014.08.005.
|
[136] |
TYRELL D, PERLMAN A B. Evaluation of rail passenger equipment crashworthiness strategies [J]. Transportation Research Record:Journal of the Transportation Research Board, 2003, 1825(1): 8–14. DOI: 10.3141/1825-02.
|
[137] |
SEVERSON K J, TYRELL D C, PERLMAN A B. Collision safety comparison of conventional and crash energy management passenger rail car designs [C] // Proceedings of the IEEE/ASME 2003 Joint Rail Conference. Chicago: ASME, 2003: 83-90. DOI: 10.1115/rtd2003-1657.
|
[138] |
田红旗. 客运列车耐冲击吸能车体设计方法 [J]. 交通运输工程学报, 2001, 1(1): 110–114. DOI: 10.3321/j.issn:1671-1637.2001.01.028.
TIAN H Q. Crashworthy energy absorbing car-body design method for pass enger train [J]. Journal of Triffic and Transportation Engineering, 2001, 1(1): 110–114. DOI: 10.3321/j.issn:1671-1637.2001.01.028.
|
[139] |
JACOBSEN K, TYRELL D, PERLMAN B. Impact test of a crash-energy management passenger rail car [C] // Proceedings of the ASME/IEEE 2004 Joint Rail Conference. Baltimore: ASME, 2004. DOI: 10.1115/rtd2004-66045.
|
[140] |
SEVERSON K J, PARENT D P. Train-to-train impact test of crash energy management passenger rail equipment: occupant experiments [C] // Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago: ASME, 2006. DOI: 10.1115/imece2006-14420.
|
[141] |
TYRELL D, GORDON J. Crash energy management: an overview of federal railroad administration research [J]. TR News, 2013(286): 4–10.
|
[142] |
JACOBSEN K M. Collision dynamics modeling of crash energy management passenger rail equipment [D]. Medford-Somerville: Tufts University, 2008.
|
[143] |
MERAN A P, BAYKASOGLU C, MUGAN A, et al. Development of a design for a crash energy management system for use in a railway passenger car [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 230(1): 206–219. DOI: 10.1177/0954409714533321.
|
[144] |
FANG Z W, WANG J R, LIU H T, et al. Design and analysis for a 4-stage crash energy management system for railway vehicles [C] // ICRVS 2018: International Conference on Railway Vehicles and Systems. Barcelona, Spain: International Journal of Transport and Vehicle Engineering, 2018.
|
[145] |
LU G. Energy absorption requirement for crashworthy vehicles [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2002, 216(1): 31–39. DOI: 10.1243/0954409021531665.
|
[146] |
杨宝柱, 肖守讷, 杨超. 能量吸收方案对列车碰撞响应的影响 [J]. 城市轨道交通研究, 2018, 21(3): 48–51. DOI: 10.16037/j.1007-869x.2018.03.013.
YANG B Z, XIAO S N, YANG C. Effect of energy absorbing schemes on train crash re-sponse [J]. Urban Mass Transit, 2018, 21(3): 48–51. DOI: 10.16037/j.1007-869x.2018.03.013.
|
[147] |
XIE S C, ZHOU H. Forecasting impact injuries of unrestrained occupants in railway vehicle passenger compartments [J]. Traffic Injury Prevention, 2014, 15(7): 740–747. DOI: 10.1080/15389588.2013.862590.
|
[148] |
XIE S C, TIAN H Q. Dynamic simulation of railway vehicle occupants under secondary impact [J]. Vehicle System Dynamics, 2013, 51(12): 1803–1817. DOI: 10.1080/00423114.2013.834368.
|
[149] |
VANINGEN-DUNN C. Commuter rail seat testing and analysis of facing seats: DOT/FRA/ORD-03/06 [R]. Washington: U. S. Department of Transportation Federal Railroad Administration, Office of Research and Development, 2003.
|
[150] |
TYRELL D, ZOLOCK J, VANINGEN-DUNN C. Train-to-train impact test: occupant protection experiments [C] //Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition. New Orleans, USA: ASME, 2002. DOI: 10.1115/IMECE2002-39611.
|
[151] |
TYRELL D C, SEVERSON K J, MARQUIS B P. Analysis of occupant protection strategies in train collisions [C] //Proceedings of the ASME International Mechanical Engineering Congress and Exposition. San Francisco, USA: ASME, 1995.
|
[152] |
CARVALHO M, AMBROSIO J, MILHO J. Implications of the inline seating layout on the protection of occupants of railway coach interiors [J]. International Journal of Crashworthiness, 2011, 16(5): 557–568. DOI: 10.1080/13588265.2011.611399.
|
[153] |
CARVALHO M, MARTINS A, MILHO J. Validation of a railway inline seating model for occupants injury biomechanics [J]. International journal of crashworthiness, 2018, 23(3): 328–335. DOI: 10.1080/13588265.2017.1328651.
|
[154] |
CARVALHO M, MILHOJ, AMBROSIO J, et al. Railway occupant passive safety improvement by optimal design [J]. International Journal of Crashworthiness, 2017, 22(6): 624–634. DOI: 10.1080/13588265.2016.1221332.
|
[155] |
施青松, 刘艳文, 杨超, 等. 轨道卧铺客车乘员二次碰撞安全性研究 [J]. 机车车辆工艺, 2013(6): 6–8,10. DOI: 10.3969/j.issn.1007-6034.2013.06.003.
SHI Q S, LIU Y W, YANG C, et al. Research of secondary crashworthiness for passengers in railway sleeping cars [J]. Locomotive & Rolling Stock Technology, 2013(6): 6–8,10. DOI: 10.3969/j.issn.1007-6034.2013.06.003.
|
[156] |
佟鑫, 张乐乐, 刘文, 等. 新型纵向卧铺结构被动安全性仿真分析与评估 [J]. 吉林大学学报(工学版), 2020, 50(1): 147–155. DOI: 10.13229/j.cnki.jdxbgxb20180942.
TONG X, ZHANG L L, LIU W, et al. Simulation analysis and evaluation on passive safety of the longitudinal berth [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 147–155. DOI: 10.13229/j.cnki.jdxbgxb20180942.
|
[157] |
OMINO K, SHIROTO H, SAITOH A, et al. Behavior analysis of passengers on bench seats in a train collision [J]. Quarterly Report of RTRI, 2008, 49(1): 47–52. DOI: 10.2219/rtriqr.49.47.
|
[158] |
ROBERT T, BEILLAS P, MAUPAS A, et al. Conditions of possible head impacts for standing passengers in public transportation: an experimental study [J]. International Journal of Crashworthiness, 2007, 12(3): 319–327. DOI: 10.1080/13588260701433552.
|
[159] |
HAULT-DUBRULLE A, ROBACHE F, DRAZETIC P, et al. Analysis of train driver protection in rail collisions: part I. evaluation of injury outcome for train driver in desk impact [J]. International Journal of Crashworthiness, 2013, 18(2): 183–193. DOI: 10.1080/13588265.2013.769484.
|
[160] |
ZHOU H C, ZHAN J, WANG W B, et al. Dynamic simulation of train driver under secondary impact [J]. Advances in Mechanical Engineering, 2017, 9(12): 1–10. DOI: 10.1177/1687814017743111.
|
[161] |
CAPUTO F, LAMANNA G, SOPRANO A. On the evaluation of the overloads coming from the use of seat-belts on a passenger railway seat [J]. International Journal of Mechanics and Materials in Design, 2012, 8(4): 335–348. DOI: 10.1007/s10999-012-9199-1.
|
[162] |
CAPUTO F, FIDANZA F, LAMANNA G. Multibody investigation on the passive safety performances of seats in railway vehicles [C] // Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. Istanbul, Turkey: ASME, 2010. DOI: 10.1115/ESDA2010-24766.
|
[163] |
PARENT D P, TYRELL D C, RANCATORE R, et al. Design of a workstation table with improved crashworthiness performance [C]//Proceedings of theASME 2005 International Mechanical Engineering Congress and Exposition. Orlando: ASME, 2005. DOI: 10.1115/IMECE2005-82779.
|
[164] |
SEVERSON K J, TYRELL D C, RANCATORE R. Crashworthiness requirements for commuter rail passenger seats [C]//Proceedings of theASME 2005 International Mechanical Engineering Congress and Exposition. Orlando, USA: ASME, 2005. DOI: 10.1115/IMECE2005-82643.
|
[165] |
XIE S C, TIAN H Q. Influencing factors and sensitivity analysis of occupant impact injury in passenger compartment [J]. Traffic Injury Prevention, 2013, 14(8): 816–822. DOI: 10.1080/15389588.2013.768341.
|
[166] |
WEI L, ZHANG L L. Evaluation and improvement of crashworthiness for high-speed train seats [J]. International Journal of Crashworthiness, 2018, 23(5): 561–568. DOI: 10.1080/13588265.2017.1367354.
|
[167] |
PROCHOWSKI L, ŻUCHOWSKI A. Analysis of the influence of passenger position in a car on a risk of injuries during a car accident [J]. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 2014, 16(3): 360–366.
|
[168] |
YANG W L, XIE S C, LI H H, et al. Design and injury analysis of the seated occupant protection posture in train collision [J]. Safety Science, 2019, 117: 263–275. DOI: 10.1016/j.ssci.2019.04.028.
|
[169] |
CHEVALIER M C, MAUPAS A, LEVEQUE D, et al. Air-bag protection of the train driver during a collision [C] //Proceedings of the 2005 International IRCOBI Conference on the Biomechanics of Impact. Prague, Czechoslovakia: IRCOBI Conference, 2015.
|
[170] |
HAULT-DUBRULLE A, ROBACHE F, DRAZETIC P, et al. Analysis of train driver protection in rail collisions: part II. design of a desk with improved crashworthiness performance [J]. International Journal of Crashworthiness, 2013, 18(2): 194–205. DOI: 10.1080/13588265.2013.769485.
|
[171] |
ANGHILERI M, CASTELLETTI L M L, PIROLA M, et al. CIV class tram crashworthiness assessment [J]. International Journal of Crashworthiness, 2008, 13(4): 425–435. DOI: 10.1080/13588260802049372.
|
[172] |
PENG Y, HOU L, YANG M Z, et al. Investigation of the train driver injuries and the optimization design of driver workspace during a collision [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(8): 902–915. DOI: 10.1177/0954409716647418.
|
[173] |
ZOLOCK J D, TYRELL D C. Locomotive cab occupant protection [C] // Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition. Washington, USA: ASME, 2003. DOI: 10.1115/IMECE2003-55121.
|