Volume 43 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
JI Guojian, SHAN Mengqi, ZHOU Ning, WANG Zhengwei. An experimental study on the explosion process of high-temperature molten tin liquid contacted with water[J]. Explosion And Shock Waves, 2023, 43(1): 012102. doi: 10.11883/bzycj-2021-0496
Citation: JI Guojian, SHAN Mengqi, ZHOU Ning, WANG Zhengwei. An experimental study on the explosion process of high-temperature molten tin liquid contacted with water[J]. Explosion And Shock Waves, 2023, 43(1): 012102. doi: 10.11883/bzycj-2021-0496

An experimental study on the explosion process of high-temperature molten tin liquid contacted with water

doi: 10.11883/bzycj-2021-0496
  • Received Date: 2021-11-30
  • Rev Recd Date: 2022-06-22
  • Available Online: 2022-06-28
  • Publish Date: 2023-01-05
  • To study the explosion mechanism and the energy conversion process of the interaction between low melting point metal tin and water, a visual experiment platform is built to monitor the contact reaction processes at different mass ratios of tin to water, e.g., 5, 10, 15 and 20. The platform consists of a high-frequency melting furnace, a high-speed camera, signal collectors and other equipment. Meanwhile, high melting point metal aluminum is selected for comparative experiments under the same experimental conditions to explore the differences in reaction characteristics between low melting point metal tin and high melting point metal aluminum during the steam explosion. Some mathematical calculation models are established to quantitatively analyze the shock wave energy in line with the law of conservation and explosive shock theory. The results show that two steam explosions are triggered when molten tin reacted with water at a mass ratio 5; and in the comparative explosion experiments of molten tin with water and molten aluminum with water under the same experimental conditions, the reaction intensity and the duration during the explosion of molten metal with water are respectively related to the degree of fragmentation and thermal diffusivity. In addition, the calculation indicates that about 0.45% to 10.91% of the heat energy stored in the molten tin is converted into the explosion shock wave energy throughout the steam explosions. Moreover, the shock wave energy conversion ratio is affected by the mass ratio; and this effect is reflected in that the energy conversion ratio of the shock wave first increases and then decreases with the increase in mass ratio; when the mass ratio is 10, the energy conversion ratio is the largest. It is also found in comparison experiments that the shock wave energy conversion ratios in the explosion experiments of tin reacting with water are higher than the shock wave energy conversion ratios in the explosion experiments of aluminum reacting with water when the mass ratio is less than 12.69.
  • loading
  • [1]
    LOWERY A W, ROBERTS J. Organic coatings to prevent molten metal explosions [J]. Materials Science Forum, 2009, 630: 201–204. DOI: 10.4028/www.scientific.net/MSF.630.201.
    [2]
    ARAKI Y, HOKUGO A, PINHEIRO A T K, et al. Explosion at an aluminum factory caused by the July 2018 Japan floods: investigation of damages and evacuation activities [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104352. DOI: 10.1016/j.jlp.2020.104352.
    [3]
    MIYAZAKI K, MORIMOTO K, YAMAMOTO O, et al. Thermal interaction of water droplet with molten tin [J]. Journal of Nuclear Science and Technology, 1984, 21(12): 907–918. DOI: 10.3327/jnst.21.907.
    [4]
    SHOJI M, TAKAGI N. Thermal interaction when a cold volatile liquid droplet impinges on a hot liquid surface [J]. Bulletin of JSME, 1986, 29(250): 1183–1187. DOI: 10.1299/jsme1958.29.1183.
    [5]
    PERETS Y, HARARI R, SHER E. Vapor explosion of coolant jet when penetrating a hot molten metal [J]. Nuclear Science and Engineering: the Journal of the American Nuclear Society, 2005, 150(2): 237–244. DOI: 10.13182/NSE05-A2512.
    [6]
    张政铭. 水与高温熔融金属相互作用过程中接触特性研究 [D]. 上海: 上海交通大学, 2014: 14–17.

    ZHANG Z M. Study of the contact interaction between coolant water and high temperature molten metal [D]. Shanghai, China: Shanghai Jiao Tong University, 2014: 14–17.
    [7]
    周源. 蒸汽爆炸中熔融金属液滴热碎化机理及模型研究 [D]. 上海: 上海交通大学, 2014: 28–39.

    ZHOU Y. Research on thermal fragmentation mechanism and model of single metal drop in a steam explosion [D]. Shanghai, China: Shanghai Jiao Tong University, 2014: 28–39.
    [8]
    张荣金, 李延凯, 周源, 等. 水滴与液态金属锡相互作用实验研究 [J]. 核科学与工程, 2015, 35(3): 568–573. DOI: 10.3969/j.issn.0258-0918.2015.03.026.

    ZHANG R J, LI Y K, ZHOU Y, et al. Experimental study of thermal interaction between water droplet and molten tin [J]. Nuclear Science and Engineering, 2015, 35(3): 568–573. DOI: 10.3969/j.issn.0258-0918.2015.03.026.
    [9]
    ZEIGARNIK Y A, IVOCHKIN Y P, KOROL’E Z. The thermomechanical mechanism of fine fragmentation of liquid droplets under conditions of vapor explosion [J]. High Temperature, 2004, 42(3): 497–500. DOI: 10.1023/B:HITE.0000033889.01232.a5.
    [10]
    李天舒, 杨燕华, 袁明豪, 等. 金属物性与冷却剂温度对蒸汽爆炸的影响 [J]. 中国核电, 2008(1): 75–79.

    LI T S, YANG Y H, YUAN M H, et al. The effects of metal thermal character and coolant temperature on vapor explosion [J]. China Nuclear Power, 2008(1): 75–79.
    [11]
    李天舒. 低温熔融金属蒸汽爆炸理论与实验研究 [D]. 上海: 上海交通大学, 2008: 12–13.

    LI T S. Theoretical and experimental researches of vapor explosion [D]. Shanghai, China: Shanghai Jiao Tong University, 2008: 12–13.
    [12]
    林千, 佟立丽, 曹学武, 等. 熔融液滴与水作用细粒化实验研究 [J]. 核动力工程, 2009, 30(1): 31–35.

    LIN Q, TONG L L, CAO X W, et al. Experiment on fragmentation of melt drop interacted with water [J]. Nuclear Power Engineering, 2009, 30(1): 31–35.
    [13]
    林栋. 水滴撞击低熔点熔融金属动力学特性研究 [D]. 合肥: 合肥工业大学, 2019: 45–46.

    LIN D. Study on dynamic characteristics of water droplets impinging on low-melting-point molten metal [D]. Hefei, Anhui, China: Hefei University of Technology, 2019: 45–46.
    [14]
    王骞. 低熔点熔融金属液滴/液柱与水作用动力学特性研究 [D]. 合肥: 合肥工业大学, 2019: 19–22.

    WANG Q. Study on kinetic characteristics of interaction between low melting point molten metal droplet/column and water [D]. Hefei, Anhui, China: Hefei University of Technology, 2019: 19–22.
    [15]
    沈致远. 高温熔融物与冷却剂的相互作用 [J]. 硅谷, 2011(19): 159–161. DOI: 10.3969/j.issn.1671-7597.2011.19.146.
    [16]
    李天舒, 郭艳红, 詹晓梅. 蒸汽爆炸的影响因素分析 [J]. 原子能科学技术, 2012, 46(S1): 259–261. DOI: 10.7538/yzk.2012.46.suppl.0259.

    LI T S, GUO Y H, ZHAN X M. Analysis of vapor explosion effect factors [J]. Atomic Energy Science and Technology, 2012, 46(S1): 259–261. DOI: 10.7538/yzk.2012.46.suppl.0259.
    [17]
    胡逊祥, 董玉杰, 胡志华. 熔融金属锡在水中运动时压力波动特性实验研究 [J]. 原子能科学技术, 2008, 42(S1): 110–115. DOI: 10.7538/yzk.2008.42.z1.0110.

    HU X X, DONG Y J, HU Z H. Experimental research on characteristics of pressure wave of molten stannum moving in water [J]. Atomic Energy Science and Technology, 2008, 42(S1): 110–115. DOI: 10.7538/yzk.2008.42.z1.0110.
    [18]
    陆祺, 陈德奇, 宋家斑, 等. 高温熔融金属表面爆炸沸腾过程的实验研究 [J]. 核动力工程, 2016, 37(3): 158–162. DOI: 10.13832/j.jnpe.2016.03.0158.

    LU Q, CHEN D Q, SONG J B, et al. Experimental research on FCI process of high superheated molten metals [J]. Nuclear Power Engineering, 2016, 37(3): 158–162. DOI: 10.13832/j.jnpe.2016.03.0158.
    [19]
    周宁, 李雪, 陈兵, 等. 高温熔融铝液与水接触爆炸过程实验研究 [J]. 实验力学, 2021, 36(1): 114–122. DOI: 10.7520/1001-4888-20-157.

    ZHOU N, LI X, CHEN B, et al. Experimental study on the explosion process of high temperature molten aluminum liquid contacted with water [J]. Journal of Experimental Mechanics, 2021, 36(1): 114–122. DOI: 10.7520/1001-4888-20-157.
    [20]
    钱增源. 低熔点金属的热物性 [M]. 北京: 科学出版社, 1985: 205–207.
    [21]
    严国建, 周明安, 余轮, 等. 空气中爆炸冲击波超压峰值的预测 [J]. 采矿技术, 2011, 11(5): 89–90,112. DOI: 10.3969/j.issn.1671-2900.2011.05.035.
    [22]
    REID R C. Possible mechanism for pressurized-liquid tank explosions or BLEVE’s [J]. Science, 1979, 203(4386): 1263–1265. DOI: 10.1126/science.203.4386.1263.
    [23]
    王广亮, 蒋涛. 蒸气爆炸系列讲座: 第三讲 水蒸气爆炸 [J]. 安全、环境和健康, 2002(3): 41–42.

    WANG G L, JIANG T. Lecture series on steam explosion: Lecture 3 water vapor explosion [J]. Safety, Health & Environment, 2002(3): 41–42.
    [24]
    纪国剑, 李佩萤, 李森, 等. 蒸汽爆炸中熔融金属与冷却剂接触特性研究综述 [J]. 工业安全与环保, 2019, 45(8): 22–27. DOI: 10.3969/j.issn.1001-425X.2019.08.006.

    JI G J, LI P Y, LI S, et al. A review of contact characteristics of molten metal and coolant in steam explosion [J]. Industrial Safety and Environmental Protection, 2019, 45(8): 22–27. DOI: 10.3969/j.issn.1001-425X.2019.08.006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (551) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return