Volume 43 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LI Manjiang, ZHAO Zhihao, DONG Xinlong, FU Yingqian, YU Xinlu, ZHOU Gangyi. Deformation and phase transformation of 20 steel cylinders driven by inner explosion[J]. Explosion And Shock Waves, 2023, 43(1): 013105. doi: 10.11883/bzycj-2022-0074
Citation: LI Manjiang, ZHAO Zhihao, DONG Xinlong, FU Yingqian, YU Xinlu, ZHOU Gangyi. Deformation and phase transformation of 20 steel cylinders driven by inner explosion[J]. Explosion And Shock Waves, 2023, 43(1): 013105. doi: 10.11883/bzycj-2022-0074

Deformation and phase transformation of 20 steel cylinders driven by inner explosion

doi: 10.11883/bzycj-2022-0074
  • Received Date: 2022-03-01
  • Rev Recd Date: 2022-11-04
  • Available Online: 2022-12-01
  • Publish Date: 2023-01-05
  • Studying the microstructure evolution of metals subject to shock waves is significant for understanding the structural deformation and failure mechanism of such a pipe under a very high rate of loading. The microstructure evolution and phase transformation characteristics of the material under the action of shock wave are discussed through the microscopic analysis of the cross-section of explosive recovered fragments of 20 steel cylindrical shell driven by explosive expansion. The finite element method (FEM) also was used to simulate the explosion experiment of 20 steel cylindrical shell under the condition of PETN charge and to analyze the cylindrical shell’s thermodynamic characteristics during the expansion fracture process. The results show that the α-grans near the cylinder’s inner surface contain numerous slip lines, distributed in parallel. The FEM simulation indicates that these regions meet the αε phase transition thermo-dynamic condition. Furthermore, electron back scattered diffraction (EBSD) analysis of the microstructure of the regions with parallel slips line demonstrates the formation of a strongly fragmented. And there are {332}<113> twins and {112}<111> twins. At the same time, the ε phase structure of the hexagonal close-packed lattice (HCP) exists in the fragmented structure area of the parallel slip line. However, there was no residual ε phase structure in the original structure of the sample and the area except for the sample wall thickness (inner 0–3.0 mm) after the explosion. Analysis deems in which the αεα transformation occurred. The change of material properties caused by phase transformation may affect the cylindrical shell's internal stress and strain state and the fracture process. Considering the impact of the dynamic phase transition of metal materials on the deformation and failure of structures under shock waves, it is significant to accurately simulate the deformation and failure of such cylindrical shells, and it is necessary to further study the influence of phase transformation.
  • loading
  • [1]
    GURNEY R W. The initial velocities of fragments from bombs, shells and grenades: BRL 405 [R]. Maryland: Army Ballistic Research Laboratory, 1943.
    [2]
    TAYLOR G I. The fragmentation of tubular bombs [J]. Advisory Council on Scientific Research and Technical Development, 1963, 5(1): 202–320.
    [3]
    HOGGATT C R, RECHT R F. Fracture behavior of tubular bombs [J]. Journal of Applied Physics, 1968, 39(3): 1856–1862. DOI: 10.1063/1.1656442.
    [4]
    胡八一, 董庆东, 韩长生, 等. 爆炸金属管绝热剪切断裂的细观研究 [J]. 爆炸与冲击, 1993, 13(4): 305–312.

    HU B Y, DONG Q D, HAN C S, et al. Mesoscopic study of adiabatic shear fracture of the metal tubes under internal explosive loading [J]. Explosion and Shock Waves, 1993, 13(4): 305–312.
    [5]
    金山, 汤铁钢, 孙学林, 等. 不同热处理条件下45钢柱壳的动态性能 [J]. 爆炸与冲击, 2006, 26(5): 423–428. DOI: 10.11883/1001-1455(2006)05-0423-06.

    JIN S, TANG T G, SUN X L, et al. Dynamic characteristics of 45 steel cylinder shell by different heat treatment conditions [J]. Explosion and Shock Waves, 2006, 26(5): 423–428. DOI: 10.11883/1001-1455(2006)05-0423-06.
    [6]
    GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
    [7]
    张世文, 刘仓理, 于锦泉. 微缺陷对圆管膨胀断裂的影响 [J]. 爆炸与冲击, 2008, 28(4): 316–323. DOI: 10.11883/1001-1455(2008)04-0316-08.

    ZHANG S W, LIU C L, YU J Q. Influences of microdefects on expanding fracture of a metal cylinder [J]. Explosion and Shock Waves, 2008, 28(4): 316–323. DOI: 10.11883/1001-1455(2008)04-0316-08.
    [8]
    潘顺吉, 俞鑫炉, 董新龙. 不同载荷下TA2钛合金柱壳爆炸碎裂的实验研究 [J]. 高压物理学报, 2017, 31(4): 382–388. DOI: 10.11858/gywlxb.2017.04.005.

    PAN S J, YU X L, DONG X L. Experimental study of fragmentation behavior of exploded TA2 alloy cylinders with varied charge [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 382–388. DOI: 10.11858/gywlxb.2017.04.005.
    [9]
    LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109: 240–252. DOI: 10.1016/j.ijimpeng.2017.07.008.
    [10]
    吴思思, 董新龙, 俞鑫炉. 45钢柱壳爆炸膨胀断裂的SPH模拟分析 [J]. 爆炸与冲击, 2021, 41(10): 103101. DOI: 10.11883/bzycj-2021-0172.

    WU S S, DONG X L, YU X L. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method [J]. Explosion and Shock Waves, 2021, 41(10): 103101. DOI: 10.11883/bzycj-2021-0172.
    [11]
    吴文苍, 董新龙, 庞振, 等. TA2钛合金开口柱壳外爆碎片分布研究 [J]. 力学学报, 2021, 53(6): 1795–1806. DOI: 10.6052/0459-1879-21-017.

    WU W C, DONG X L, PANG Z, et al. Study on fragments distribution of explosively driven cylinders for TA2 titanium alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1795–1806. DOI: 10.6052/0459-1879-21-017.
    [12]
    庞振, 董新龙, 吴文苍, 等. TA2钛金属柱壳外爆绝热剪切碎裂及微观组织演化 [J]. 稀有金属材料与工程, 2021, 50(12): 4334–4341.

    PANG Z, DONG X L, WU W C, et al. Multiple adiabatic shear fragmentation and microstructure evolution of explosive-driven TA2 pure titanium cylinders [J]. Rare Metal Materials and Engineering, 2021, 50(12): 4334–4341.
    [13]
    刘明涛, 汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题 [J]. 爆炸与冲击, 2021, 41(1): 011402. DOI: 10.11883/bzycj-2020-0351.

    LIU M T, TANG T G. Key physical problems in the expanding fracture of explosively driven metallic shells [J]. Explosion and Shock Waves, 2021, 41(1): 011402. DOI: 10.11883/bzycj-2020-0351.
    [14]
    LI W B, CHEN Z C, WANG X M, et al. Research on the intermediate phase of 40CrMnSiB steel shell under different heat treatments [J]. Defence Technology, 2021, 17(3): 1032–1041. DOI: 10.1016/j.dt.2020.06.009.
    [15]
    张世文, 李英雷, 陈艳, 等. 爆炸加载下金属柱壳破片软回收技术研究 [J]. 爆炸与冲击, 2021, 41(11): 114102. DOI: 10.11883/bzycj-2020-0449.

    ZHANG S W, LI Y L, CHEN Y, et al. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading [J]. Explosion and Shock Waves, 2021, 41(11): 114102. DOI: 10.11883/bzycj-2020-0449.
    [16]
    MINSHALL S. Investigation of a polymorphic transition in iron at 130-kbar [J]. Physical Review, 1955, 98(1): 271.
    [17]
    BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. DOI: 10.1063/1.1722359.
    [18]
    JAMIESON J C, LAWSON A W. X-Ray diffraction studies in the 100 kilobar pressure range [J]. Journal of Applied Physics, 1962, 33(3): 776–780. DOI: 10.1063/1.1777167.
    [19]
    MEYERS M A. Dynamic behavior of materials [M]. New York: John Wiley & Sons, Inc, 1994. DOI: 10.1002/9780470172278.
    [20]
    DOBROMYSLOV A V, KOZLOV E A, TALUTS N I. High-strain-rate deformation of Armco iron induced by spherical and quasi-spherical converging shock waves and the mechanism of the α-ɛ transformation [J]. The Physics of Metals and Metallography, 2008, 106(5): 531–541. DOI: 10.1134/S0031918X08110136.
    [21]
    SHAO J L, DUAN S Q, HE A M, et al. Dynamic properties of structural transition in iron under uniaxial compression [J]. Journal of Physics: Condensed Matter, 2009, 21(24): 245703. DOI: 10.1088/0953-8984/21/24/245703.
    [22]
    GUNKELMANN N, BRINGA E M, KANG K, et al. Polycrystalline iron under compression: plasticity and phase transitions [J]. Physical Review B, 2012, 86(14): 144111. DOI: 10.1103/PhysRevB.86.144111.
    [23]
    WANG S J, SUI M L, CHEN Y T, et al. Microstructural fingerprints of phase transitions in shock-loaded iron [J]. Scientific Reports, 2013, 3: 1086. DOI: 10.1038/srep01086.
    [24]
    DOUGHERTY L M, GRAY Ⅲ G T, CERRETA E K, et al. Rare twin linked to high-pressure phase transition in iron [J]. Scripta Materialia, 2009, 60(9): 772–775. DOI: 10.1016/j.scriptamat.2009.01.014.
    [25]
    EPSHTEIN G N. Structure of metals deformed by explosion [M]. Moscow: Metallurgiya, 1988.
    [26]
    YAAKOBI B, BOEHLY T R, MEYERHOFER D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in Nanosecond-Laser Shocks [J]. Physical Review Letters, 2005, 95(7): 075501. DOI: 10.1103/PhysRevLett.95.075501.
    [27]
    IVANOV A G, NOVIKOV S A. On rarefaction shocks in iron and steel [J]. Zh Eksp Teor Fiz, 1961, 40(6): 1880–1882.
    [28]
    ERKMAN J O. Smooth spalls and the polymorphism of iron [J]. Journal of Applied Physics, 1961, 32(5): 939–944. DOI: 10.1063/1.1736137.
    [29]
    IVANOV A G, NOVIKOV S A. Rarefaction shock waves in iron from explosive loading [J]. Combustion, Explosion, and Shock Waves, 1986, 22(3): 343–350. DOI: 10.1007/BF00750354.
    [30]
    ZUREK A K, FRANTZ C E, GRAY G T. In shock wave and high strain rate phenomena in materials [M]. Boca Raton: CRC Press, 1992.
    [31]
    VOLTZ C, ROY G. Study of spalling for high purity iron below and above shock induced α $\Leftrightarrow $ ε phase transition [J]. AIP Conference Proceedings, 2004, 706(1): 511–516. DOI: 10.1063/1.1780289.
    [32]
    VOLTZ C, BUY F, ROY G. Iron damage and spalling behavior below and above shock induced α $\Leftrightarrow $ ε phase transition [J]. AIP Conference Proceedings, 2006, 845(1): 678–681. DOI: 10.1063/1.2263413.
    [33]
    DE RESSÉGUIER T, HALLOUIN M. Effects of the α-ε phase transition on wave propagation and spallation in laser shock-loaded iron [J]. Physical Review B, 2008, 77(17): 174107. DOI: 10.1103/PhysRevB.77.174107.
    [34]
    ОРЛЕНКО Л П. Explosion physics [M]. 3rd ed. Translated by SUN C W. Beijing: Science Press, 2011.
    [35]
    BASHISTAKUMAR M, PUSHKAL B. Finite element analysis of orthogonal cutting forces in machining AISI 1020 steel using a carbide tip tool [J]. Journal of Engineering Sciences, 2018, 5(2): A1–A10. DOI: 10.21272/JES.2018.5(2).A1.
    [36]
    DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Livermore: Lawrence Livermore National Laboratory, 1981.
    [37]
    BROWN J M, MCQUEEN R G. Melting of iron under core conditions [J]. Geophysical Research Letters, 1980, 7(7): 533–536. DOI: 10.1029/GL007i007p00533.
    [38]
    JEANLOZ R, WENK H R. Convection and anisotropy of the inner core [J]. Geophysical Research Letters, 1988, 15(1): 72–75. DOI: 10.1029/gl015i001p00072.
    [39]
    SAXENA S K, SHEN G, LAZOR P. Experimental evidence for a new iron phase and implications for Earth’s core [J]. Science, 1993, 260(5112): 1312–1314. DOI: 10.1126/science.260.5112.1312.
    [40]
    WENK H R, MATTHIES S, HEMLEY R J, et al. The plastic deformation of iron at pressures of the Earth’s inner core [J]. Nature, 2000, 405(6790): 1044–1047. DOI: 10.1038/35016558.
    [41]
    SMITH C S. Metallographic studies of metals after explosive shock [J]. Transactions of the Metallurgical Society of AIME, 1958, 212: 574–589.
    [42]
    MIYAGI L, KUNZ M, KNIGHT J, et al. In situ phase transformation and deformation of iron at high pressure and temperature [J]. Journal of Applied Physics, 2008, 104(10): 103510. DOI: 10.1063/1.3008035.
    [43]
    ZARKEVICH N A, JOHNSON D D. Coexistence pressure for a martensitic transformation from theory and experiment: revisiting the bcc-hcp transition of iron under pressure [J]. Physical Review B, 2015, 91(17): 174104. DOI: 10.1103/PhysRevB.91.174104.
    [44]
    PAUL W, WARSCHAUER D M. Solids under pressure [M]. New York: McGraw-Hill, 1963.
    [45]
    JOHNSON P C, STEIN B A, DAVIS R S. Temperature dependence of shock-induced phase transformations in iron [J]. Journal of Applied Physics, 1962, 33(2): 557–561. DOI: 10.1063/1.1702465.
    [46]
    CLOUGHERTY E V, KAUFMAN L. In high pressure measurements [M]. Washington: Butterworths, 1963.
    [47]
    BLACKBURN L D, KAUFMAN L, COHEN M. Phase transformations in iron-ruthenium alloys under high pressure [J]. Acta Metallurgica, 1965, 13(5): 533–541. DOI: 10.1016/0001-6160(65)90104-5.
    [48]
    GILES P M, LONGENBACH M H, MARDER A R. High-pressure α $\rightleftarrows $ ε martensitic transformation in iron [J]. Journal of Applied Physics, 1971, 42(11): 4290–4295. DOI: 10.1063/1.1659768.
    [49]
    BROWN J M, MCQUEEN R G. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B7): 7485–7494. DOI: 10.1029/jb091ib07p07485.
    [50]
    LOREE T R, FOWLER C M, ZUKAS E G, et al. Dynamic polymorphism of some binary iron alloys [J]. Journal of Applied Physics, 1966, 37(4): 1918–1927. DOI: 10.1063/1.1708625.
    [51]
    王永刚. 延性金属动态拉伸断裂及其临界损伤度研究 [D]. 北京: 中国工程物理研究院, 2006.
    [52]
    DOBROMYSLOV A V, KOZLOV E A, LITVINOV B V, et al. High-rate deformation of Armco iron under loading by spherical converging shock waves [J]. Doklady Physics, 2007, 52(8): 418–421. DOI: 10.1134/s1028335807080046.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (466) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return