Citation: | YUAN Liangzhu, LU Jianhua, MIAO Chunhe, WANG Pengfei, XU Songlin. Dynamic properties of oyster shells based on a fractional-order model[J]. Explosion And Shock Waves, 2023, 43(1): 011101. doi: 10.11883/bzycj-2022-0318 |
[1] |
杨挺青. 黏弹性力学 [M]. 武汉: 华中理工大学出版社, 1992: 1–28.
|
[2] |
JI B H, GAO H J. Mechanical properties of nanostructure of biological materials [J]. Journal of the Mechanics and Physics of Solids, 2004, 52: 1963–1990. DOI: 10.1016/j.jmps.2004.03.006.
|
[3] |
MAO L B, GAO H L, YAO H B, et al. Synthetic nacre by predesigned matrix-directed mineralization [J]. Science, 2016, 354: 107–110. DOI: 10.1126/science.aaf8991.
|
[4] |
GAO H L, CHEN S M, MAO L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nature Communications, 2017(8): 287. DOI: 10.1038/s41467-017-00392-z.
|
[5] |
WU K J, SONG Z Q, ZHANG S S, et al. Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity [J]. Proceedings of the National Academy of Sciences, 2020, 117(27): 15465–15472. DOI: 10.1073/pnas.2000639117.
|
[6] |
HUANG Z W, LI H Z, PAN Z L, et al. Uncovering high-strain rate protection mechanism in nacre [J]. Scientific Reports, 2011(1): 148. DOI: 10.1038/srep00148.
|
[7] |
徐松林, 刘永贵, 席道瑛等. 弹性波在含双裂纹岩体中的传播分析 [J]. 地球物理学报, 2012, 55(3): 944–952. DOI: 10.6038/j.issn.0001-5733.2012.03.024.
XU S L, LIU Y G, XI D Y, et al. Analysis of propagation of elastic wave in rocks with double-crack model [J]. Chinese Journal of Geophysics, 2012, 55(3): 944–952. DOI: 10.6038/j.issn.0001-5733.2012.03.024.
|
[8] |
谭子翰, 徐松林, 刘永贵, 等. 含多种尺寸缺陷岩体中的弹性波散射 [J]. 应用数学和力学, 2013, 34(1): 38–48. DOI: 10.3879/j.issn.1000-0887.2013.01.005.
TAN Z H, XU S L, LIU Y G, et al. Scattering of elastic waves by multi-size defects in rock mass [J]. Applied Mathematics and Mechanics, 2013, 34(1): 38–48. DOI: 10.3879/j.issn.1000-0887.2013.01.005.
|
[9] |
WANG P F, XU S L, LI Z B, et al. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading [J]. Materials Science and Engineering A, 2014, 620: 253–261. DOI: 10.1016/j.msea.2014.10.026.
|
[10] |
MIAO C H, XU S L, SONG Y P, et al. Influence of stress state on dynamic breakage of quartz glass spheres subjected to lower velocity impacting [J]. Powder Technology, 2022, 397: 117081. DOI: 10.1016/j.powtec.2021.117081.
|
[11] |
HUANG J Y, HU S S, XU S L, et al. Fractal crushing of granular materials under confined compression at different strain rates [J]. International Journal of Impact Engineering, 2017, 106: 259–265. DOI: 10.1016/j.ijimpeng.2017.04.021.
|
[12] |
TING T C T, MUKUNOKI I. A theory of viscoelastic analogy for wave propagation normal to the layering of a layered medium [J]. Journal of Applied Mechanics, 1979, 46(2): 329–336. DOI: 10.1115/1.3424550.
|
[13] |
张鸣, 王道荣, 单俊芳, 等. 石英纤维布叠层材料冲击性能研究 [J]. 实验力学, 2018, 33(2): 183–193. DOI: 10.7520/1001-4888-17-201.
ZHANG M, WANG D R, SHAN J F, et al. Investigation on impact properties of quartz fiber cloth laminated material [J]. Journal of Experimental Mechanics, 2018, 33(2): 183–193. DOI: 10.7520/1001-4888-17-201.
|
[14] |
李毅, 苗春贺, 徐松林, 等. 梯度密度黏弹性材料的波传播研究 [J]. 爆炸与冲击, 2021, 41(1): 013202. DOI: 10.11883/bzycj-2020-0313.
LI Y, MIAO C H, XU S L, et al. Wave propagation in density-graded viscoelastic material [J]. Explosion and Shock Waves, 2021, 41(1): 013202. DOI: 10.11883/bzycj-2020-0313.
|
[15] |
李毅. 梯度密度黏弹性材料的冲击响应研究 [D]. 合肥: 中国科学技术大学, 2020: 17–74. DOI: 10.27517/d.cnki.gzkju.2021.001407.
LI Y. Investigation of dynamic response in density-graded viscoelastic material [D]. Hefei, Anhui, China: University of Science and Technology of China, 2021: 17–74. DOI: 10.27517/d.cnki.gzkju.2021.001407.
|
[16] |
陈文, 孙洪广, 李西成, 等. 力学与工程问题的分数阶导数建模 [M]. 北京: 科学出版社, 2010: 12–56.
|
[17] |
BAGLEY R L. Power law and fractional calculus model of viscoelasticity [J]. AIAA Journal, 1989, 27(10): 1412–1417. DOI: 10.2514/3.10279.
|
[18] |
雷经发, 许孟, 刘涛, 等. 聚氯乙烯弹性体静动态力学性能及本构模型 [J]. 爆炸与冲击, 2020, 40(10): 103103. DOI: 10.11883/bzycj-2019-0249.
LEI J F, XU M, LIU T, et al. Static/dynamic mechanical properties and a constitutive model of a polyvinyl chloride elastomer [J]. Explosion and Shock Waves, 2020, 40(10): 103103. DOI: 10.11883/bzycj-2019-0249.
|
[19] |
段宇星, 杨强, 赵苗苗, 等. 弹性体材料应变率相关力学行为模型 [J]. 橡胶工业, 2020, 67(12): 899–903. DOI: 10.12136/j.issn.1000-890X.2020.12.0899.
DUAN Y X, YANG Q, ZHAO M M, et al. Strain rate-related mechanical behavior model of elastomer material [J]. China Rubber Industry, 2020, 67(12): 899–903. DOI: 10.12136/j.issn.1000-890X.2020.12.0899.
|
[20] |
WANG P F, YANG J L, SUN G Z, et al. Twist induced plasticity and failure mechanism of helical carbon nanotube fibers under different strain rates [J]. International Journal of Plasticity, 2018, 110: 74–94. DOI: 10.1016/j.ijplas.2018.06.007.
|
[21] |
WANG P F, YANG J L, ZHANG X, et al. Dynamic behavior of carbon nanofiber-modified epoxy with the effect of polydopamine-coated interface [J]. Mechanics of Advanced Materials and Structures, 2018: 1827–1839. DOI: 10.1080/15376494.2018.1529843.
|
[22] |
薛晓. 碳纳米管纤维的动静态力学性能研究 [D]. 合肥: 中国科学技术大学, 2020: 53–61. DOI: 10.27517/d.cnki.gzkju.2020.000565.
XUE X. Investigation of dynamic and quasi-static mechanical properties of carbon nanotube fibers [D]. Hefei, Anhui, China: University of Science and Technology of China, 2020: 53–61. 10.27517/d.cnki.gzkju.2020.000565.
|
[23] |
XUE X, WANG P F, GONG M, et al. Time-dependent microstructural evolution mechanisms of twisted carbon nanotube fibers under tension and relaxation [J]. International Journal of Plasticity, 2021, 136: 102866. DOI: 10.1016/j.ijplas.2020.102866.
|
[24] |
赵永玲, 侯之超. 基于分数导数的橡胶材料两种粘弹性本构模型 [J]. 清华大学学报(自然科学版), 2013, 53(3): 378–383. DOI: 10.16511/j.cnki.qhdxxb.2013.03.004.
ZHAO Y L, HOU Z C. Two viscoelastic constitutive models of rubber materials using fractional derivations [J]. Journal of Tsinghua University (Science and Technology), 2013, 53(3): 378–383. DOI: 10.16511/j.cnki.qhdxxb.2013.03.004.
|
[25] |
BAGLEY R L, TORRVIK P J. A theoretical basis for the application of fractional calculus to viscoelasticity [J]. Journal of Rheology, 1983, 27(3): 201–210. DOI: 10.1122/1.549724CODEN:JORHD2.
|
[26] |
寇磊. 分数阶微分型双参数黏弹性地基矩形板受荷响应 [J]. 力学季刊, 2013, 34(1): 154–160. DOI: 10.3969/j.issn.0254-0053.2013.01.020.
KOU L. Response of rectangular plate on fractional derivative two-parameter viscoelastic foundation [J]. Chinese Quarterly of Mechanics, 2013, 34(1): 154–160. DOI: 10.3969/j.issn.0254-0053.2013.01.020.
|
[27] |
尹耀得, 赵德敏, 刘建林, 等. 丙烯酸弹性体的率相关分数阶黏弹性模型研究 [J]. 力学学报, 2022, 54(1): 154–162. DOI: 10.6052/0459-1879-21-445.
YIN Y D, ZHAO D M, LIU J L, et al. Study on the rate dependency of acrylic elastomer-based fractional viscoelastic model [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 154–162. DOI: 10.6052/0459-1879-21-445.
|
[28] |
ZHAO D M, YIN Y D, LIU J L. A fractional finite strain viscoelastic model of dielectric elastomer [J]. Applied Mathematical Modelling, 2021, 100: 564–579. DOI: 10.1016/j.apm.2021.08.023.
|
[29] |
ROSSIKHIN Y A, SHITIKOVA M V. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results [J]. Applied Mechanics Reviews, 2009, 63: 010801. DOI: 10.1115/1.4000563.
|
[30] |
冯卓意, 陈雪梅. 贝壳资源的深加工利用 [J]. 材料科学与工程学报, 2022, 40(1): 123–128. DOI: 10.14136/j.cnki.issn1673-2812.2022.01.020.
FENG Z Y, CHEN X M. Research on the processing technology of seashell resource [J]. Journal of Materials Sciense and Engineering, 2022, 40(1): 123–128. DOI: 10.14136/j.cnki.issn1673-2812.2022.01.020.
|
[31] |
孙晋美, 郭万林. 贝壳珍珠母多级结构的化学-力学稳定性 [J]. 中国科学:物理学 力学 天文学, 2009, 39(11): 1654–1663.
SUN J M, GUO W L. Chemical-mechanical stability of the hierarchical structure of shell nacre [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2009, 39(11): 1654–1663.
|
[32] |
CONNOLLY J A. The numerical solution of fractional and distributed order differential equations [D]. Liverpool, UK: University of Liverpool, 2004: 13–48.
|
[33] |
张元林. 工程数学(积分变换) [M]. 4版. 北京: 高等教育出版社, 2010: 85–88.
|