Volume 34 Issue 1
Mar.  2014
Turn off MathJax
Article Contents
Yu Yu-ying, Xi Feng, Dai Cheng-da, Cai Ling-cang, Tan Hua, Li Xue-mei. Measurement of strength in a Zr-based bulk metallic glass under dynamic high-pressure loading[J]. Explosion And Shock Waves, 2014, 34(1): 1-5.
Citation: Yu Yu-ying, Xi Feng, Dai Cheng-da, Cai Ling-cang, Tan Hua, Li Xue-mei. Measurement of strength in a Zr-based bulk metallic glass under dynamic high-pressure loading[J]. Explosion And Shock Waves, 2014, 34(1): 1-5.

Measurement of strength in a Zr-based bulk metallic glass under dynamic high-pressure loading

Funds:  Supported by the National Natural Science Foundation of China (10732010, 10972206, 11172281)
  • Received Date: 2012-07-25
  • Rev Recd Date: 2013-01-01
  • Publish Date: 2014-01-25
  • To investigate the dynamic strength behaviors of a Zr-based bulk metallic glass(BMG), Zr51Ti5Ni10Cu25Al9(in atomic percent), a series of reverse-impact experiments were performed in the peak shock stress range from 37to 66GPa.A displacement interferometer system for any reflector(DISAR)was used to measure the particle velocity profiles at the sample/LiF window interface.By analyzing the measured particle velocity profiles, the yield strength and shear modulus of the Zr-based BMG were obtained.The experimental results show that both the yield strength and the shear modulus of the Zr-based BMG increase with the increasing of the shock stresses in the stress range considered here.And the shear stress relaxation across the shock wave front of the Zr-based BMG is not due to the shock-induced damage/failure or temperature softening.
  • loading
  • [1]
    Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48(1): 279-306. doi: 10.1016/S1359-6454(99)00300-6
    [2]
    Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys[J]. Acta Materialia, 2007, 55(12): 4067-4109. doi: 10.1016/j.actamat.2007.01.052
    [3]
    Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses[J]. Progress in Materials Science, 2010, 55(8): 759-839. doi: 10.1016/j.pmatsci.2010.04.002
    [4]
    Lu J, Ravichandran G. Pressure-dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass[J]. Journal of Materials Research, 2003, 18(9): 2039-2049. doi: 10.1557/JMR.2003.0287
    [5]
    Mashimo T, Togo H, Zhang Y, et al. Hugoniot-compression curve of a Zr-based bulk metallic glass[J]. Applied Physics Letters, 2006, 89(24): 241904. doi: 10.1063/1.2403931
    [6]
    Xi F, Yu Y Y, Dai C D, et al. Shock compression response of a Zr-based bulk metallic glass up to 110GPa[J]. Journal of Applied Physics, 2010, 108(8): 083537. doi: 10.1063/1.3501044
    [7]
    Turneaure S J, Dwivedi S K, Gupta Y M. Shock-wave induced tension and spall in a zirconium-based bulk amorphous alloy[J]. Journal of Applied Physics, 2007, 101(4): 043514. doi: 10.1063/1.2537982
    [8]
    Yuan F P, Prakash V, Lewandowski J J. Spall strength and Hugoniot elastic limit of a zirconium-based bulk metallic glass under planar shock compression[J]. Journal of Materials Research, 2007, 22(2): 402-411. doi: 10.1557/jmr.2007.0053
    [9]
    Yuan F P, Prakash V, Lewandowski J J. Shear yield and flow behavior of a zirconium-based bulk metallic glass[J]. Mechanics of Materials, 2010, 42(3): 248-255. doi: 10.1016/j.mechmat.2009.11.003
    [10]
    Turneaure S J, Winey J M, Gupta Y M. Response of a Zr-based bulk amorphous alloy to shock wave compression[J]. Journal of Applied Physics, 2006, 100(6): 063522. doi: 10.1063/1.2345606
    [11]
    俞宇颖, 习锋, 戴诚达, 等.冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为[J].物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202

    Yu Yu-ying, Xi Feng, Dai Cheng-da, et al. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading[J]. Acta Physica Sinica, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [12]
    Arman B, Luo S N, Germann T C, et al. Dynamic response of Cu46Zr54 metallic glass to high-strain-rate shock loading: Plasticity, sapll and atomic-level structures[J]. Physical Review B, 2010, 81(14): 144201. doi: 10.1103/PhysRevB.81.144201
    [13]
    Wang W H, Li F Y, Pan M X, et al. Elastic property and its response to pressure in a typical bulk metallic glass[J]. Acta Materialia, 2004, 52(3): 715-719. doi: 10.1016/j.actamat.2003.10.008
    [14]
    Weng J D, Tan H, Wang X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Applied Physics Letters, 2006, 89(1): 111101. doi: 10.1063/1.2335948
    [15]
    Narsh S P. LASL Shock Hugoniot Data[M]. Berkeley: University of California Press, 1980: 296-297.
    [16]
    谭华.实验冲击波物理导引[M].北京: 国防工业出版社, 2007: 163-167.
    [17]
    Yu Y Y, Tan H, Hu J B, et al. Determination of effective shear modulus of shock-compressed LY12Al from particle velocity profile measurements[J]. Journal of Applied Physics, 2008, 103(10): 103529. doi: 10.1063/1.2927492
    [18]
    Asay J R, Chhabildas L C. Determination of the shear strength of shock compressed 6061-T6aluminum[C]//Meyers M M, Murr L E. Shock waves and high-strain-rate phenomena in metals. New York: Plenum, 1981: 417-431.
    [19]
    Wang J G, Zhao D Q, Pan M X, et al. Correlation between onset of yielding and free volume in metallic glasses[J]. Scripta Materialia, 2010, 62(7): 477-480. doi: 10.1016/j.scriptamat.2009.12.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (1140) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return