Citation: | YE Chuanbing, DUAN Zhiwei, LI Xuhai, WANG Xi, PAN Hao, YU Yuying, HU Jianbo. Dynamic fragmentation of oxygen-free high-conducting copper under Mach stem loading[J]. Explosion And Shock Waves, 2023, 43(11): 113101. doi: 10.11883/bzycj-2023-0172 |
[1] |
陈华燕, 曾祥国, 朱文吉, 等. 爆炸荷载作用下桥梁动态响应及其损毁过程的数值模拟 [J]. 四川大学学报(工程科学版), 2011, 43(6): 15-19, 97. DOI: 10.15961/j.jsuese.2011.06.001.
CHEN H Y, ZENG X G, ZHU W J, et al. Numerical simulation of dynamic response and damage process for bridge under blast loading [J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(6): 15–19, 97. DOI: 10.15961/j.jsuese.2011.06.001.
|
[2] |
朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-J2009-144.
ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-J2009-144.
|
[3] |
陈大伟, 王裴, 孙海权, 等. 爆轰波对碰驱动平面锡飞层的动力学及动载行为特征研究 [J]. 物理学报, 2016, 65(2): 024701. DOI: 10.7498/aps.65.024701.
CHEN D W, WANG P, SUN H Q, et al. Loading characteristics and dynamic behaviors of the plane tin flying layer driven by detonation collision [J]. Acta Physica Sinica, 2016, 65(2): 024701. DOI: 10.7498/aps.65.024701.
|
[4] |
张凤国, 刘军, 何安民, 等. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用 [J]. 物理学报, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.
ZHANG F G, LIU J, HE A M, et al. Modelling of spall damage evolution and fragment distribution for melted metals under shock release [J]. Acta Physica Sinica, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.
|
[5] |
程素秋, 陈高杰, 高鑫, 等. 不同装药战斗部壳体对水中兵器的爆炸威力 [J]. 爆炸与冲击, 2018, 38(6): 1372–1377. DOI: 10.11883/bzycj-2017-0127.
CHENG S Q, CHEN G J, GAO X, et al. Estimation of underwater explosive energy for different charge warhead shells [J]. Explosion and Shock Waves, 2018, 38(6): 1372–1377. DOI: 10.11883/bzycj-2017-0127.
|
[6] |
WALSH J M, SHREFFLER R G, WILLIG F J. Limiting conditions for jet formation in high velocity collisions [J]. Journal of Applied Physics, 1953, 24(3): 349–359. DOI: 10.1063/1.1721278.
|
[7] |
ASAY J R, MIX L P, PERRY F C. Ejection of material from shocked surfaces [J]. Applied Physics Letters, 1976, 29(5): 284–287. DOI: 10.1063/1.89066.
|
[8] |
ASAY J R. Material ejection from shock-loaded free surfaces of aluminum and lead: SAND-76-0542 [R]. Albuquerque, USA: Sandia National Laboratories, 1976. DOI: 10.2172/7136578.
|
[9] |
ASAY J R. Thick-plate technique for measuring ejecta from shocked surface [J]. Journal of Applied Physics, 1978, 49(12): 6173–6175. DOI: 10.1063/1.324545.
|
[10] |
SORENSON D S, MINICH R W, ROMERO J L, et al. Ejecta particle size distributions for shock loaded Sn and Al metals [J]. Journal of Applied Physics, 2002, 92(10): 5830–5836. DOI: 10.1063/1.1515125.
|
[11] |
OGORODNIKOV V A, MIKHAĬOV A L, BURTSEV V V, et al. Detecting the ejection of particles from the free surface of a shock-loaded sample [J]. Journal of Experimental and Theoretical Physics, 2009, 109(3): 530–535. DOI: 10.1134/S1063776109090180.
|
[12] |
ESCOBEDO J P, DENNIS-Koller D, CERRETA E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper [J]. Journal of Applied Physics, 2011, 110(3): 033513. DOI: 10.1063/1.3607294.
|
[13] |
FOWLES G R, ISBELL W M. Method for Hugoniot equation-of-state measurements at extreme pressures [J]. Journal of Applied Physics, 1965, 36(4): 1377–1379. DOI: 10.1063/1.1714313.
|
[14] |
BROWN J L, RAVICHANDRAN G, REINHART W D, et al. High pressure Hugoniot measurements using converging shocks [J]. Journal of Applied Physics, 2011, 109(9): 093520. DOI: 10.1063/1.3590140.
|
[15] |
THADHANI N N. Shock compression processing of powders [J]. Advanced Materials and Manufacturing Processes, 1988, 3(4): 493–549. DOI: 10.1080/10426918808953217.
|
[16] |
汤文辉. 冲击波物理[M]. 北京: 科学出版社, 2011: 174–181.
|
[17] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures [C]// Proceedings of 7th International Symposium on Ballistics. The Hague, 1983: 541–547.
|
[18] |
ANSYS AUTODYN Material [DB]. ANSYS, 2019.
|
[19] |
俞宇颖, 谭华, 胡建波, 等. 钽和LY12铝的高压声速测量 [J]. 爆炸与冲击, 2006, 26(6): 486–491. DOI: 10.11883/1001-1455(2006)06-0486-06.
YU Y Y, TAN H, HU J B, et al. Measurements of sound velocities in shock-compressed tantalum and LY12 Al [J]. Explosion and Shock Waves, 2006, 26(6): 486–491. DOI: 10.11883/1001-1455(2006)06-0486-06.
|
[20] |
WANG X M, SHI J. Validation of Johnson-Cook plasticity and damage model using impact experiment [J]. International Journal of Impact Engineering, 2013, 60: 67–75. DOI: 10.1016/j.ijimpeng.2013.04.010.
|
[21] |
LEE S, BARTHELAT F, HUTCHHINSON J W, et al. Dynamic failure of metallic pyramidal truss core materials: experiments and modeling [J]. International Journal of Plasticity, 2006, 22(11): 2118–2145. DOI: 10.1016/j.ijplas.2006.02.006.
|
[22] |
侯日立, 周平, 彭建祥. 冲击波作用下LY12铝合金结构毁伤的数值模拟 [J]. 爆炸与冲击, 2012, 32(5): 470–474. DOI: 10.11883/1001-1455(2012)05-0470-05.
HOU R L, ZHOU P, PENG J X. Numerical simulation of shock damage of LY12 aluminium alloy sructure [J]. Explosion and Shock Waves, 2012, 32(5): 470–474. DOI: 10.11883/1001-1455(2012)05-0470-05.
|
[23] |
辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数书册 [M]. 北京: 机械工业出版社, 2020: 139.
|
[1] | LI Guoqiang, MA Gang, GAO Songtao, GUO Dongcai, ZHANG Jiayin. Numerical study on dynamic response and spall damage of filter concrete under impact load[J]. Explosion And Shock Waves, 2023, 43(2): 023201. doi: 10.11883/bzycj-2022-0189 |
[2] | SUN Yuxiang, WANG Jie, WU Haijun, ZHOU Jiequn, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment and simulation on high-pressure equation of state for concrete[J]. Explosion And Shock Waves, 2020, 40(12): 121401. doi: 10.11883/bzycj-2020-0002 |
[3] | TAN Xiaojun, FENG Xiaowei, HU Yanhui, XIE Ruoze, YANG Shiquan, BAI Yunshan. Experimental investigation on characteristics of layered ice spheres under high-velocity impact[J]. Explosion And Shock Waves, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047 |
[4] | HE Nianfeng, REN Guowu, CHEN Yongtao, GUO Zhaoliang. Numerical simulation on spallation and fragmentation of tin under explosive loading[J]. Explosion And Shock Waves, 2019, 39(4): 042101. doi: 10.11883/bzycj-2017-0354 |
[5] | WEN Xuefeng, WANG Xiaoyan, WANG Jian, HONG Renkai, HU Yang, CHEN Yongtao. A step-signal electirc probe technology for recognising the front surface of micro-spall[J]. Explosion And Shock Waves, 2018, 38(2): 309-315. doi: 10.11883/bzycj-2016-0271 |
[6] | Chen Yongtao, Hong Renkai, Chen Haoyu, Hu Haibo, Tang Tiegang. Micro-spalling of metal under explosive loading[J]. Explosion And Shock Waves, 2017, 37(1): 61-67. doi: 10.11883/1001-1455(2017)01-0061-07 |
[7] | Zhang Lin, Li Yinghua, Zhang Zugen, Li Xuemei, Hu Changming, Cai Lingcang. Asay window for probing the microspall of materials[J]. Explosion And Shock Waves, 2017, 37(4): 692-698. doi: 10.11883/1001-1455(2017)04-0692-07 |
[8] | TangTie-gang, LiuCang-li. Ontheconstitutivemodelforoxygen-freehigh-conductivitycopper underhighstrain-ratetension[J]. Explosion And Shock Waves, 2013, 33(6): 581-586. doi: 10.11883/1001-1455(2013)06-0581-06 |
[9] | ZHAO Zhi-hong, GUO Jian-chun. Asizepredictionmodelforrockparticlesgenerated byanexplosioninfracturedrock[J]. Explosion And Shock Waves, 2011, 31(6): 669-672. doi: 10.11883/1001-1455(2011)06-0669-04 |
[10] | MA Dong-fang, HOU Yan-jun, CHEN Da-nian, WU Shan-xing, WANG Huan-ran, JIA Cun-wei. FracturetestsofOFHCbarsunderimpacttensionandanalysis basedonarepresentativevolumeelement[J]. Explosion And Shock Waves, 2011, 31(4): 385-391. doi: 10.11883/1001-1455(2011)04-0385-07 |
[11] | YANG Zhen-qi, PANG Bao-jun, WANG Li-wen, CHI Run-qiang. JH-2modelanditsapplicationtonumericalsimulationonAl2O3ceramic underlow-velocityimpact[J]. Explosion And Shock Waves, 2010, 30(5): 463-471. doi: 10.11883/1001-1455(2010)05-0463-09 |
[12] | CHEN Da-nian, HU Jin-wei, JIN Yang-hui, WU Shan-xing, WANG Huan-ran, MA Dong-fang. Critical impact velocity for oxygen-free high-conductivity copper in tension[J]. Explosion And Shock Waves, 2009, 29(2): 113-118. doi: 10.11883/1001-1455(2009)02-0113-06 |
[13] | TANG Tie-gang, LI Qing-zhong, CHEN Yong-tao, GU Yan, LIU Cang-li. An improved technique for dynamic tension of metal ring by explosive loading[J]. Explosion And Shock Waves, 2009, 29(5): 546-549. doi: 10.11883/1001-1455(2009)05-0546-04 |
[14] | LI Xue-mei, WANG Xiao-song, WANG Peng-lai, LU Min, JIA Lu-feng. Spall of cylindrical copper by converging sliding detonation[J]. Explosion And Shock Waves, 2009, 29(2): 162-166. doi: 10.11883/1001-1455(2009)02-0162-05 |
[15] | FAN Chun-lei, HU Jin-wei, CHEN Da-nian, WANG Huan-ran, XIE Shu-gang. Measurement of transverse stress and determination of yield stress for OFHC copper subjected to planar shock[J]. Explosion And Shock Waves, 2008, 28(2): 110-115. doi: 10.11883/1001-1455(2008)02-0110-06 |
[16] | GUI Yu-lin, SUN Cheng-wei, LU Zhong-hua, LI Qiang, ZHANG Guang-sheng. The dynamic fracture and fragmentation of OFHC Cu under 1-D fast tension[J]. Explosion And Shock Waves, 2007, 27(1): 40-44. doi: 10.11883/1001-1455(2007)01-0040-05 |
[17] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[18] | GUI Yu-lin, LIU Cang-li, WANG Yan-ping, SUN Cheng-wei. The spall fracture mechanism and numerical simulation of no-Co-alloy steel[J]. Explosion And Shock Waves, 2005, 25(2): 183-188. doi: 10.11883/1001-1455(2005)02-0183-06 |
[19] | GUO Wei-guo. Flow stress and constitutive model of OFHC Cu for large deformation, different temperatures and different strain rates[J]. Explosion And Shock Waves, 2005, 25(3): 244-250. doi: 10.11883/1001-1455(2005)03-0244-07 |