Citation: | JIN Liu, HAO Huimin, ZHANG Renbo, DU Xiuli. Meso-scale simulations on dynamic splitting tensile behaviors of concrete at elevated temperatures[J]. Explosion And Shock Waves, 2020, 40(5): 053102. doi: 10.11883/bzycj-2018-0401 |
[1] |
赵建魁, 方秦, 陈力, 等. 爆炸与火荷载联合作用下RC梁耐火极限的数值分析 [J]. 天津大学学报(自然科学与工程技术版), 2015, 10(48): 873–880.
ZHAO J K, FANG Q, CHEN L, et al. Numerical analysis of fire resistance of RC beams subjected to explosion and fire load [J]. Journal of Tianjin University (Science and Technology), 2015, 10(48): 873–880.
|
[2] |
李杰, 卢朝辉, 张其云. 混凝土随机损伤本构关系-单轴受压分析 [J]. 同济大学学报(自然科学版), 2003, 31(5): 505–509. DOI: 10.3321/j.issn:0253-374X.2003.05.001.
LI J, LU Z H, ZHANG Q Y. Study on stochastic damage constitutive law for concrete material subjected to uniaxial compressive stress [J]. Journal of Tongji University (Natural Science), 2003, 31(5): 505–509. DOI: 10.3321/j.issn:0253-374X.2003.05.001.
|
[3] |
王政, 倪玉山, 曹菊珍, 等. 冲击载荷下混凝土动态力学性能研究进展 [J]. 爆炸与冲击, 2005, 25(6): 519–527. DOI: 10.11883/1001-1455(2005)06-0519-09.
WANG Z, NI Y S, CAO J Z, et al. Recent advances of dynamic mechanical behavior of concrete under impact loading [J]. Explosion and Shock Waves, 2005, 25(6): 519–527. DOI: 10.11883/1001-1455(2005)06-0519-09.
|
[4] |
ZHOU X, HAO H. Mesoscale modelling of concrete tensile failure mechanism at high strain rates [J]. Computers and Structures, 2008, 86(21): 2013–2026.
|
[5] |
刘海峰, 宁建国. 冲击荷载作用下混凝土材料的细观本构模型 [J]. 爆炸与冲击, 2009, 29(3): 261–267. DOI: 10.11883/1001-1455(2009)03-0261-07.
LIU H F, NING J G. A meso-mechanical constitutive model of concrete subjected to impact loading [J]. Explosion and Shock Waves, 2009, 29(3): 261–267. DOI: 10.11883/1001-1455(2009)03-0261-07.
|
[6] |
LU Y, LI Q. About the dynamic uniaxial tensile strength of concrete-like materials [J]. International Journal of Impact Engineering, 2011, 38(4): 171–180. DOI: 10.1016/j.ijimpeng.2010.10.028.
|
[7] |
秦川, 武明鑫, 张楚汉. 混凝土冲击劈拉实验与细观离散元数值仿真 [J]. 水力发电学报, 2013, 32(1): 196–205.
QIN C, WU M X, ZHANG C H. Impact splitting tensile experiments of concrete and numerical modeling by meso-scale discrete elements [J]. Journal of Hydroelectric Engineering, 2013, 32(1): 196–205.
|
[8] |
宋来忠, 张伟朋, 周斌, 等. 混凝土动态劈拉特性及损伤机理研究 [J]. 三峡大学学报(自然科学版), 2015, 37(6): 10–14.
SONG L Z, ZHANG P W, ZHOU B, et al. Dynamic splitting tensile behavior and damage mechanism of concrete [J]. Journal of China Gorges University (Natural Science), 2015, 37(6): 10–14.
|
[9] |
王孝政, 彭刚, 刘博文, 等. 不同应变速率下混凝土劈拉性能试验研究 [J]. 工业建筑, 2017, 47(5): 107–110.
WANG X Z, PENG G, LIU B W, et al. Experimental research on splitting tensile performance of concrete under different strain rate [J]. Industrial Construction, 2017, 47(5): 107–110.
|
[10] |
MA Q, GUO R, ZHAO Z, et al. Mechanical properties of concrete at high temperature: a review [J]. Construction and Building Materials, 2015, 93: 371–383. DOI: 10.1016/j.conbuildmat.2015.05.131.
|
[11] |
郭金纯, 余江滔, 陆洲导. 不同温-时影响下混凝土劈拉强度的试验研究 [J]. 工业建筑, 2008, 38(9): 74–76.
GUO J C, YU J T, LU Z D. Experimental research on the splitting tensile strength of concrete at different temperature and time [J]. Industrial Construction, 2008, 38(9): 74–76.
|
[12] |
金鑫, 杜红秀, 阎蕊珍. 高性能混凝土高温后劈裂抗拉强度试验研究 [J]. 太原理工大学学报, 2013, 44(5): 637–640. DOI: 10.3969/j.issn.1007-9432.2013.05.019.
JIN X, DU X H, YAN R Z. Experimental research on the splitting tensile strength of high-performance concrete after elevated temperature [J]. Journal of Taiyuan University of Technology, 2013, 44(5): 637–640. DOI: 10.3969/j.issn.1007-9432.2013.05.019.
|
[13] |
JIN L, HAO H M, ZHANG R B, et al. Determination of the effect of elevated temperatures on dynamic compressive properties of heterogeneous concrete: a meso-scale numerical study [J]. Construction and Building Materials, 2018, 188: 685–694. DOI: 10.1016/j.conbuildmat.2018.08.090.
|
[14] |
漆雅庆. 火灾下钢筋混凝土构件的非线性有限元分析研究[D]. 广州: 华南理工大学, 2011.
|
[15] |
JIN L, ZHANG R B, DU X L. Characterization of the temperature-dependent heat conduction in heterogeneous concretes [J]. Magazine of Concrete Research, 2018, 70(7): 325–339. DOI: 10.1680/jmacr.17.00174.
|
[16] |
Euro-International Committee for Concrete. CEB-FIP model code 1990 [S]. Trowbridge, Wiltshire, UK: Redwood Books, 1993.
|
[17] |
KHAN M I. Factors affecting the thermal properties of concrete and applicability of its prediction models [J]. Building and Environment, 2002, 37(6): 607–614.
|
[18] |
VOSTEEN H D, SCHELLSCHMIDT R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock [J]. Physics and Chemistry of the Earth, 2003, 28(9): 499–509.
|
[19] |
ČERNÝ R, MADĔRA J, PODĔBRADSKÁ J, et al. The effect of compressive stress on thermal and hygric properties of Portland cement mortar in wide temperature and moisture ranges [J]. Cement and Concrete Research, 2000, 30(8): 1267–1276.
|
[20] |
李凌志. 火灾后混凝土材料力学性能与温度、时间的关系[D]. 上海: 同济大学, 2006.
|
[21] |
CHEN L, FANG Q, JIANG X, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
|
[22] |
朱合华, 闫治国, 邓涛, 等. 3种岩石高温后力学性质的试验研究 [J]. 岩石力学与工程学报, 2006, 25(10): 1945–1950. DOI: 10.3321/j.issn:1000-6915.2006.10.001.
ZHU H H, YAN Z G, DENG T, et al. Testing study on mechanical properties of tuff, graniteand breccia after high temperatures [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 1945–1950. DOI: 10.3321/j.issn:1000-6915.2006.10.001.
|
[23] |
邱一平, 林卓英. 花岗岩样品高温后损伤的试验研究 [J]. 岩土力学, 2006, 27(6): 1005–1010. DOI: 10.3969/j.issn.1000-7598.2006.06.032.
QIU Y P, LIN Z Y. Testing study on damage of granite samples after high temperature [J]. Rock and Soil Mechanics, 2006, 27(6): 1005–1010. DOI: 10.3969/j.issn.1000-7598.2006.06.032.
|
[24] |
LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures [J]. ASCE Journal of Engineering Mechanics, 1998, 124(8): 892–900. DOI: 10.1061/(ASCE)0733-9399(1998)124:8(892).
|
[25] |
International Organization for Standardization. Fire resistance tests: elements of building construction[S]. Geneva: International Standards Organization, 1999.
|
[26] |
中华人民共和国建设部. 普通混凝土力学性能试验方法标准[M]. 北京: 中国建筑工业出版社, 2003.
|
[27] |
杜敏. 混凝土与约束混凝土柱尺寸效应研究[D]. 北京: 北京工业大学, 2017.
|
[28] |
项凯, 余江滔, 陆洲导. 多因素影响下高温后混凝土劈裂抗拉强度试验 [J]. 武汉理工大学学报, 2008, 30(10): 51–55.
XIANG K, YU J T, LU Z D. Experimental study on splitting tension strength of fire-damaged concrete with different influencing factors [J]. Journal of Wuhan University of Technology, 2008, 30(10): 51–55.
|
[29] |
陶俊林, 秦李波, 李奎, 等. 混凝土高温动态压缩力学性能实验 [J]. 爆炸与冲击, 2011, 31(1): 101–106. DOI: 10.11883/1001-1455(2011)03-0268-06.
TAO J L, QIN L B, LI K, et al. Experimental investigation on dynamic compression mechanical performance of concrete at high temperature [J]. Explosion and Shock Waves, 2011, 31(1): 101–106. DOI: 10.11883/1001-1455(2011)03-0268-06.
|
[30] |
何远明, 霍静思, 陈柏生, 等. 高温下混凝土SHPB动态力学性能试验研究 [J]. 工程力学, 2012, 29(9): 200–208.
HE Y M, HUO J S, CHEN B S, et al. Impact tests on dynamic behavior of concrete at elevated temperatures [J]. Engineering Mechanics, 2012, 29(9): 200–208.
|
[31] |
许金余, 刘健, 李志武, 等. 高温中与高温后混凝土的冲击力学特性 [J]. 建筑材料学报, 2013, 16(1): 1–5. DOI: 10.3969/j.issn.1007-9629.2013.01.001.
XU J Y, LIU J, LI Z W, et al. Impact mechanical properties of concrete at and after exposure to high temperature [J]. Journal of Building Materials, 2013, 16(1): 1–5. DOI: 10.3969/j.issn.1007-9629.2013.01.001.
|
[32] |
王宇涛, 刘殿书, 李胜林, 等. 高温后混凝土静动态力学性能试验研究 [J]. 振动与冲击, 2014, 33(20): 16–19.
WANG Y T, LIU D S, LI S L, et al. Static and dynamic mechanical properties of concrete after high temperature treatment [J]. Journal of Vibration and Shock, 2014, 33(20): 16–19.
|