Citation: | SONG Yiping, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. Effect of stress-state adjustment on fragmentation behavior of quartz glass beads subjected to low-velocity impact[J]. Explosion And Shock Waves, 2022, 42(7): 073103. doi: 10.11883/bzycj-2021-0244 |
[1] |
徐松林, 单俊芳, 王鹏飞. 脆性材料高应变率压缩失效机制综述与研究进展 [J]. 现代应用物理, 2020, 11(3): 030101. DOI: 10.12061/j.issn.2095-6223.2020.030101.
XU S L, SHAN J F, WANG P F. Review and research progress of dynamic failure mechanism for brittle materials under high strain rate [J]. Modern Applied Physics, 2020, 11(3): 030101. DOI: 10.12061/j.issn.2095-6223.2020.030101.
|
[2] |
HUANG J Y, XU S L, HU S S. Influence of particle breakage on the dynamic compression responses of brittle granular materials [J]. Mechanics of Materials, 2014, 68: 15–28. DOI: 10.1016/j.mechmat.2013.08.002.
|
[3] |
LIU C H, NAGEL S R, SCHECTER D A, et al. Force fluctuations in bead packs [J]. Science, 1995, 269(5223): 513–515. DOI: 10.1126/science.269.5223.513.
|
[4] |
MAJMUDAR T S, BEHRINGER R P. Contact force measurements and stress-induced anisotropy in granular materials [J]. Nature, 2005, 435(7045): 1079–1082. DOI: 10.1038/nature03805.
|
[5] |
GOLDENBERG C, GOLDHIRSCH I. Force chains, microelasticity, and macroelasticity [J]. Physical Review Letters, 2002, 89(8): 084302. DOI: 10.1103/physrevlett.89.084302.
|
[6] |
HARTLEY R R, BEHRINGER R P. Logarithmic rate dependence of force networks in sheared granular materials [J]. Nature, 2003, 421(6926): 928–931. DOI: 10.1038/nature01394.
|
[7] |
HUANG J Y, LU L, FAN D, et al. Heterogeneity in deformation of granular ceramics under dynamic loading [J]. Scripta Materialia, 2016, 111: 114–118. DOI: 10.1016/j.scriptamat.2015.08.028.
|
[8] |
HUANG J Y, XU S L, YI H S, et al. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268: 86–94. DOI: 10.1016/j.powtec.2014.08.037.
|
[9] |
易洪昇, 徐松林, 单俊芳, 等. 不同加载速度下脆性颗粒的破坏特性 [J]. 爆炸与冲击, 2017, 37(5): 913–922. DOI: 10.11883/1001-1455(2017)05-0913-10.
YI H S, XU S L, SHAN J F, et al. Fracture characteristics of brittle particles at different loading velocities [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. DOI: 10.11883/1001-1455(2017)05-0913-10.
|
[10] |
SHAN J F, XU S L, LIU Y G, et al. Dynamic breakage of glass sphere subjected to impact loading [J]. Powder Technology, 2018, 330: 317–329. DOI: 10.1016/j.powtec.2018.02.009.
|
[11] |
MCDOWELL G R, AMON A. The application of Weibull statistics to the fracture of soil particles [J]. Soils and Foundations, 2000, 40(5): 133–141. DOI: 10.3208/sandf.40.5_133.
|
[12] |
CHEONG Y S, SALMAN A D, HOUNSLOW M J. Effect of impact angle and velocity on the fragment size distribution of glass spheres [J]. Powder Technology, 2003, 138(2/3): 189–200. DOI: 10.1016/j.powtec.2003.09.010.
|
[13] |
SALMAN A D, REYNOLDS G K, FU J S, et al. Descriptive classification of the impact failure modes of spherical particles [J]. Powder Technology, 2004, 143/144: 19–30. DOI: 10.1016/j.powtec.2004.04.005.
|
[14] |
方继松, 王珠, 熊迅, 等. 石英玻璃球撞击刚性壁的破碎过程 [J]. 高压物理学报, 2020, 34(1): 014101. DOI: 10.11858/gywlxb.20190764.
FANG J S, WANG Z, XIONG X, et al. Fragmentation process of quartz glass spheres impacting rigid wall [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014101. DOI: 10.11858/gywlxb.20190764.
|
[15] |
POTAPOV A V, CAMPBELL C S. The two mechanisms of particle impact breakage and the velocity effect [J]. Powder Technology, 1997, 93(1): 13–21. DOI: 10.1016/S0032-5910(97)03242-7.
|
[16] |
简世豪, 苗春贺, 张磊, 等. 双石英玻璃珠的低速冲击破碎行为 [J]. 高压物理学报, 2021, 35(2): 024202. DOI: 10.11858/gywlxb.20200629.
JIAN S H, MIAO C H, ZHANG L, et al. Fragmentation of double quartz glass spheres subjected to lower-velocity impact [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024202. DOI: 10.11858/gywlxb.20200629.
|
[17] |
SHIPWAY P H, HUTCHINGS I M. Fracture of brittle spheres under compression and impact loading. Ⅰ. Elastic stress distributions [J]. Philosophical Magazine A, 1993, 67(6): 1389–1404. DOI: 10.1080/01418619308225362.
|
[18] |
CHAU K T, WEI X X, WONG R H C, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses [J]. Mechanics of Materials, 2000, 32(9): 543–554. DOI: 10.1016/S0167-6636(00)00026-0.
|
[19] |
黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究 [D]. 合肥: 中国科学技术大学, 2016: 82–84.
HUANG J Y. Dynamic multiscale deformation behavior and particle-breakage properties of granular materials subjected to impact loading [D]. Hefei: University of Science and Technology of China, 2016: 82–84.
|
[20] |
苗春贺, 陈丽娜, 单俊芳, 等. 水泥砂浆抗弹性能研究 [J]. 高压物理学报, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.
MIAO C H, CHEN L N, SHAN J F, et al. Research on the ballistic performance of cement mortar [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.
|
[21] |
FENG R. Formation and propagation of failure in shocked glasses [J]. Journal of Applied Physics, 2000, 87(4): 1693–1700. DOI: 10.1063/1.372079.
|
[22] |
JIANG H B, XU S L, SHAN J F, et al. Dynamic breakage of porous hexagonal boron nitride ceramics subjected to impact loading [J]. Powder Technology, 2019, 353: 359–371. DOI: 10.1016/j.powtec.2019.05.028.
|
[1] | HUANG Rong, ZHANG Xinyue, HUI Xulong, BAI Chunyu, LIU Xiaochuan, MOU Rangke, LI Gang, LI Kui. High-temperature dynamic mechanical properties and intrinsic relationships of K447A alloy[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0477 |
[2] | WEI Heguang, ZHOU Mingzhe, ZHU Ruiqing, HU Lingling. Mechanical and electrical degradation of impaired batteries after impact loading[J]. Explosion And Shock Waves, 2025, 45(2): 021421. doi: 10.11883/bzycj-2024-0312 |
[3] | GUO Delong, REN Yunyan, XU Yuxin, LI Yongpeng, LI Xudong, YANG Xiang. Effect of explosion location on impact response of titanium alloy directional detonation container[J]. Explosion And Shock Waves, 2024, 44(2): 025102. doi: 10.11883/bzycj-2023-0126 |
[4] | SHA Minggong, SUN Ying, LI Yutong, LIU Yiming, LI Yulong. Dynamic experimental study on damage behaviors of aircraft envelope coating under the impact of high-speed raindrops[J]. Explosion And Shock Waves, 2023, 43(8): 083304. doi: 10.11883/bzycj-2023-0005 |
[5] | XIE Yushan, LU Jianhua, XU Songlin, SHU Zaiqin, ZHANG Jinyong. On impact properties of Mo-ZrC gradient metal ceramics[J]. Explosion And Shock Waves, 2023, 43(3): 033101. doi: 10.11883/bzycj-2022-0374 |
[6] | LI Pengcheng, ZHANG Xianfeng, LIU Chuang, WEI Haiyang, LIU Junwei, DENG Yuxuan. Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets[J]. Explosion And Shock Waves, 2022, 42(11): 113302. doi: 10.11883/bzycj-2021-0435 |
[7] | YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114 |
[8] | YU Tongxi, ZHU Ling, XU Jun. Progress in structural impact dynamics during 2010−2020[J]. Explosion And Shock Waves, 2021, 41(12): 121401. doi: 10.11883/bzycj-2021-0113 |
[9] | MA Yan, YUAN Fuping, WU Xiaolei. Dynamic shear behaviors and microstructural deformation mechanisms in FeNiAlC dual-phase high strength alloy[J]. Explosion And Shock Waves, 2021, 41(1): 011404. doi: 10.11883/bzycj-2020-0224 |
[10] | ZHANG Shiwen, LI Yinglei, CHEN yan, DAN Jiakun, GUO Zhaoliang, LIU Mingtao. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading[J]. Explosion And Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449 |
[11] | WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, MIAO Yuzhong, GAO Yubo, NIE Taoyi. Study on static and dynamic mechanical properties and fracture mechanism of cenospheres[J]. Explosion And Shock Waves, 2020, 40(6): 063101. doi: 10.11883/bzycj-2019-0337 |
[12] | HU Ling, ZHENG Hang, FENG Qijie, ZHOU Wei, YE Xiangping, LU Lei. Mechanical behavior of long-term neutron-irradiated Al-Mg-Si alloy under compression[J]. Explosion And Shock Waves, 2019, 39(12): 123101. doi: 10.11883/bzycj-2018-0483 |
[13] | ZHANG Shiwen, LONG Jianhua, JIA Hongzhi, LIU Cangli. Influence of cylindrical shell on spatial distribution of pressure during propagation of divergent shockwave[J]. Explosion And Shock Waves, 2018, 38(2): 345-352. doi: 10.11883/bzycj-2016-0214 |
[14] | Fu Zheng, Liu Jun, Feng Qijing, Wang Zheng, Zhang Shudao. A CEL method with changeable computational domain[J]. Explosion And Shock Waves, 2017, 37(3): 528-535. doi: 10.11883/1001-1455(2017)03-0528-08 |
[15] | Tan Mengting, Zhang Xianfeng, Ge Xiankun, Liu Chuang, Xiong Wei. Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile[J]. Explosion And Shock Waves, 2017, 37(6): 1093-1100. doi: 10.11883/1001-1455(2017)06-1093-08 |
[16] | Wu Jinguo, Lin Qinghua, Wan Gang, Jin Yong, Li Haiyuan, Li Baoming. 3D numerical research of railgun gouging mechanism based on material point method[J]. Explosion And Shock Waves, 2017, 37(2): 307-314. doi: 10.11883/1001-1455(2017)02-0307-08 |
[17] | Jiang Shi -ping, Yu Hai -long, Rui Xiao -ting, Hong Jun, Li Chao. Dynamic analysis on impact fragmentation of granular systems[J]. Explosion And Shock Waves, 2014, 34(2): 247-251. doi: 10.11883/1001-1455(2014)02-0247-05 |
1. | 苗春贺,袁良柱,陆建华,王鹏飞,徐松林. 聚甲基丙烯酸甲酯的冲击破碎扩散特性. 物理学报. 2022(21): 292-300 . ![]() |