2024年 44卷 第1期
2024, 44(1): 011001.
doi: 10.11883/bzycj-2023-0414
摘要:
近年来,我国学者以膜力因子法和饱和分析方法相结合为理论工具,对梁、板等结构件在脉冲载荷作用下的塑性大变形行为作了全面深入的研究,为脉冲加载下结构的最终挠度提供了优于历史上各种刚塑性近似解的最佳刚塑性预测公式。然而,由于实际工程应用中金属结构弹塑性动力响应的复杂性和数值模拟的局限性,与考虑材料弹性效应的结果相比,刚塑性解对脉冲加载下结构所预测的最终挠度的误差有多大,是一个亟待解决的关键问题。对这个问题的首阶段研究成果厘清了材料弹性对脉冲加载下结构塑性动态大变形的影响,定量评估了由最佳刚塑性理论解与弹塑性数值模拟得到的最终挠度预测结果之间的差异。在此基础上,提出了补偿弹性效应的策略和方法,即:在已有的最佳刚塑性解预测的挠度基础上添加一个补偿项,将补偿项表达为脉冲载荷强度的效应与结构自身刚度的效应分离的变量函数,并尽量减少待定系数/指数的数量,以求表达式的简洁;根据这些原则在金属结构的主要工程应用领域内选定结构刚度和外载参数的变化范围,对固支梁和固支方板的案例实施拟合与补偿,最后得到了对梁和板增添补偿项后的简单而实用的最终挠度预测公式,其相对误差在3%的范围之内,很适合工程设计应用。文末列表给出了符号与公式的一览,并对梁和方板的结果作了综合和比较。
近年来,我国学者以膜力因子法和饱和分析方法相结合为理论工具,对梁、板等结构件在脉冲载荷作用下的塑性大变形行为作了全面深入的研究,为脉冲加载下结构的最终挠度提供了优于历史上各种刚塑性近似解的最佳刚塑性预测公式。然而,由于实际工程应用中金属结构弹塑性动力响应的复杂性和数值模拟的局限性,与考虑材料弹性效应的结果相比,刚塑性解对脉冲加载下结构所预测的最终挠度的误差有多大,是一个亟待解决的关键问题。对这个问题的首阶段研究成果厘清了材料弹性对脉冲加载下结构塑性动态大变形的影响,定量评估了由最佳刚塑性理论解与弹塑性数值模拟得到的最终挠度预测结果之间的差异。在此基础上,提出了补偿弹性效应的策略和方法,即:在已有的最佳刚塑性解预测的挠度基础上添加一个补偿项,将补偿项表达为脉冲载荷强度的效应与结构自身刚度的效应分离的变量函数,并尽量减少待定系数/指数的数量,以求表达式的简洁;根据这些原则在金属结构的主要工程应用领域内选定结构刚度和外载参数的变化范围,对固支梁和固支方板的案例实施拟合与补偿,最后得到了对梁和板增添补偿项后的简单而实用的最终挠度预测公式,其相对误差在3%的范围之内,很适合工程设计应用。文末列表给出了符号与公式的一览,并对梁和方板的结果作了综合和比较。
2024, 44(1): 012101.
doi: 10.11883/bzycj-2023-0052
摘要:
双钢板-混凝土组合墙(steel-concrete composite wall, SC wall)常用于核电站、超高层等重要结构的承重构件,其在偶然荷载作用下的力学性能也是其推广应用的关键指标。为此,针对火灾下SC墙的抗冲击性能进行研究并给出相关设计建议。首先建立了SC墙在火灾与冲击耦合作用下的有限元模型,在验证模型可靠性基础上,开展了火灾下SC墙抗冲击机理的分析;然后研究了轴力、受火时间、材料强度、冲击能量与抗剪连接件形式等参数对SC墙在火灾下抗冲击性能的影响规律;最后给出了该类构件在耦合工况下跨中峰值挠度的预测公式。结果表明:随着受火时间的增加,SC墙受冲击变形模式由局部冲切逐渐转变为整体弯曲破坏;火灾下,混凝土为SC墙受冲击的主要耗能部件;混凝土强度、轴力与抗剪连接件形式对SC墙在高温下的抗冲击性能影响显著,钢板强度的影响则较小;建议的公式可较合理地预测火灾下SC墙受冲击后的跨中峰值挠度。
双钢板-混凝土组合墙(steel-concrete composite wall, SC wall)常用于核电站、超高层等重要结构的承重构件,其在偶然荷载作用下的力学性能也是其推广应用的关键指标。为此,针对火灾下SC墙的抗冲击性能进行研究并给出相关设计建议。首先建立了SC墙在火灾与冲击耦合作用下的有限元模型,在验证模型可靠性基础上,开展了火灾下SC墙抗冲击机理的分析;然后研究了轴力、受火时间、材料强度、冲击能量与抗剪连接件形式等参数对SC墙在火灾下抗冲击性能的影响规律;最后给出了该类构件在耦合工况下跨中峰值挠度的预测公式。结果表明:随着受火时间的增加,SC墙受冲击变形模式由局部冲切逐渐转变为整体弯曲破坏;火灾下,混凝土为SC墙受冲击的主要耗能部件;混凝土强度、轴力与抗剪连接件形式对SC墙在高温下的抗冲击性能影响显著,钢板强度的影响则较小;建议的公式可较合理地预测火灾下SC墙受冲击后的跨中峰值挠度。
2024, 44(1): 012102.
doi: 10.11883/bzycj-2023-0036
摘要:
为研究泡沫铜孔隙密度和H2体积分数对合成气爆炸特性的影响,在封闭的管道中安装了孔隙密度为15、25和40 ppi的泡沫铜,实验分析了当量比为1的合成气-空气在不同H2体积分数时的火焰结构、尖端速度和超压等参数变化规律。实验结果表明:火焰在泡沫铜上游的行为是受“郁金香”火焰形成过程的影响,泡沫铜对其没有影响。但是孔隙密度和H2体积分数的改变不仅会影响“郁金香”火焰的形成时间,还会影响变形“郁金香”火焰的形成。泡沫铜将火焰分割促使其从层流向湍流转化,对爆炸火焰传播起到加速作用。泡沫铜会引起管道内超压和火焰尖端速度的极大提升,且孔隙密度越小,H2体积分数越大,火焰穿过泡沫铜后的最大火焰尖端速度越大,压力上升幅度越大,超压峰值越高。
为研究泡沫铜孔隙密度和H2体积分数对合成气爆炸特性的影响,在封闭的管道中安装了孔隙密度为15、25和40 ppi的泡沫铜,实验分析了当量比为1的合成气-空气在不同H2体积分数时的火焰结构、尖端速度和超压等参数变化规律。实验结果表明:火焰在泡沫铜上游的行为是受“郁金香”火焰形成过程的影响,泡沫铜对其没有影响。但是孔隙密度和H2体积分数的改变不仅会影响“郁金香”火焰的形成时间,还会影响变形“郁金香”火焰的形成。泡沫铜将火焰分割促使其从层流向湍流转化,对爆炸火焰传播起到加速作用。泡沫铜会引起管道内超压和火焰尖端速度的极大提升,且孔隙密度越小,H2体积分数越大,火焰穿过泡沫铜后的最大火焰尖端速度越大,压力上升幅度越大,超压峰值越高。
2024, 44(1): 012301.
doi: 10.11883/bzycj-2023-0192
摘要:
为了获得环境温度对TATB/RDX传爆药起传爆性能及驱动性能的影响特性,采用激光多普勒测速技术及瞬态太赫兹波多普勒干涉测速技术,对TATB/RDX传爆药在隔层起爆条件下的起爆、传播及驱动性能开展实验研究,获取了–45~70 ℃温度环境中TATB/RDX传爆药的到爆轰距离、爆轰反应区时间宽度、爆轰传播速度及驱动飞片的飞行速度曲线。结果表明:TATB/RDX传爆药的到爆轰距离及爆轰反应区时间宽度随环境温度的降低均近乎呈线性增长趋势;爆轰传播速度随环境温度的降低而逐渐提高;驱动飞片的速度随环境温度的变化特性在飞片主体-层裂层融合前后存在明显不同。
为了获得环境温度对TATB/RDX传爆药起传爆性能及驱动性能的影响特性,采用激光多普勒测速技术及瞬态太赫兹波多普勒干涉测速技术,对TATB/RDX传爆药在隔层起爆条件下的起爆、传播及驱动性能开展实验研究,获取了–45~70 ℃温度环境中TATB/RDX传爆药的到爆轰距离、爆轰反应区时间宽度、爆轰传播速度及驱动飞片的飞行速度曲线。结果表明:TATB/RDX传爆药的到爆轰距离及爆轰反应区时间宽度随环境温度的降低均近乎呈线性增长趋势;爆轰传播速度随环境温度的降低而逐渐提高;驱动飞片的速度随环境温度的变化特性在飞片主体-层裂层融合前后存在明显不同。
2024, 44(1): 013101.
doi: 10.11883/bzycj-2023-0119
摘要:
为了能够清晰地表征芳纶纱线在不同应变率下的力学行为,进行了Kevlar29纱线的准静态和动态拉伸试验,结合分离式霍普金森拉杆理论和运动目标追踪法,获得了Kevlar29纱线在不同应变率下的应力-应变曲线,分析了纱线动态拉伸的变形与断裂过程,揭示了Kevlar29纱线力学性能的应变率效应;通过最小二乘法拟合得到了基于纱线应变率效应的黏弹性本构方程,分析了三元件和五元件本构模型的差异及适用性。结果表明:随着应变率升高,Kevlar29纱线的断裂应变减小,拉伸强度和韧性先增大后减小,拉伸模量先增大后趋于稳定;五元件黏弹性本构模型能够较好地表征纱线力学性能的应变率效应。
为了能够清晰地表征芳纶纱线在不同应变率下的力学行为,进行了Kevlar29纱线的准静态和动态拉伸试验,结合分离式霍普金森拉杆理论和运动目标追踪法,获得了Kevlar29纱线在不同应变率下的应力-应变曲线,分析了纱线动态拉伸的变形与断裂过程,揭示了Kevlar29纱线力学性能的应变率效应;通过最小二乘法拟合得到了基于纱线应变率效应的黏弹性本构方程,分析了三元件和五元件本构模型的差异及适用性。结果表明:随着应变率升高,Kevlar29纱线的断裂应变减小,拉伸强度和韧性先增大后减小,拉伸模量先增大后趋于稳定;五元件黏弹性本构模型能够较好地表征纱线力学性能的应变率效应。
2024, 44(1): 013102.
doi: 10.11883/bzycj-2023-0237
摘要:
为了研究不同微结构陶瓷材料的冲击破坏特征,以从微结构角度出发、描述陶瓷材料非弹性变形和断裂行为的Deshpande-Evan模型为基础构建本构模型,计算了无约束条件下材料的应力状态。为了验证改进模型的有效性,将VUMAT子程序编程方法将与ABAQUS有限元软件相结合,并将其应用于典型陶瓷材料(YAG透明陶瓷)冲击破坏过程的分析模拟。采用改进模型分析应变率、应力三轴度、晶粒尺寸及初始缺陷分布密度对YAG透明陶瓷动态力学行为和损伤演化机制的影响规律。结果表明:随着晶粒尺寸和裂纹分布密度的增加,YAG透明陶瓷破坏程度随之加剧,完全损伤区域面积也随之增加,晶粒尺寸对YAG透明陶瓷宏观破坏特征的影响程度要大于裂纹分布密度;YAG透明陶瓷失效强度以及断裂应变随着晶粒尺寸以及初始缺陷分布密度的增大而减小;随着应变率不断增加,YAG透明陶瓷在不同晶粒尺寸以及初始缺陷分布密度下的峰值应力和断裂应变均随之增加;裂纹扩展速度会随着晶粒尺寸的增加呈现出先增加而后平缓的趋势,裂纹扩展速度与初始缺陷分布密度系数成线性关系。改进模型可以描述YAG透明陶瓷微结构对其宏观破坏特征的影响,为进一步分析微结构对陶瓷材料宏观破坏特征的影响提供支撑。
为了研究不同微结构陶瓷材料的冲击破坏特征,以从微结构角度出发、描述陶瓷材料非弹性变形和断裂行为的Deshpande-Evan模型为基础构建本构模型,计算了无约束条件下材料的应力状态。为了验证改进模型的有效性,将VUMAT子程序编程方法将与ABAQUS有限元软件相结合,并将其应用于典型陶瓷材料(YAG透明陶瓷)冲击破坏过程的分析模拟。采用改进模型分析应变率、应力三轴度、晶粒尺寸及初始缺陷分布密度对YAG透明陶瓷动态力学行为和损伤演化机制的影响规律。结果表明:随着晶粒尺寸和裂纹分布密度的增加,YAG透明陶瓷破坏程度随之加剧,完全损伤区域面积也随之增加,晶粒尺寸对YAG透明陶瓷宏观破坏特征的影响程度要大于裂纹分布密度;YAG透明陶瓷失效强度以及断裂应变随着晶粒尺寸以及初始缺陷分布密度的增大而减小;随着应变率不断增加,YAG透明陶瓷在不同晶粒尺寸以及初始缺陷分布密度下的峰值应力和断裂应变均随之增加;裂纹扩展速度会随着晶粒尺寸的增加呈现出先增加而后平缓的趋势,裂纹扩展速度与初始缺陷分布密度系数成线性关系。改进模型可以描述YAG透明陶瓷微结构对其宏观破坏特征的影响,为进一步分析微结构对陶瓷材料宏观破坏特征的影响提供支撑。
2024, 44(1): 013103.
doi: 10.11883/bzycj-2023-0073
摘要:
基于传统的分离式霍普金森拉杆系统,设计了应变控制的冲击疲劳寿命测试实验,研究了冲击疲劳加载下纯钛的微观演化机制及冲击疲劳对材料宏观力学行为的影响。通过对不同冲击疲劳试验阶段的试样开展准静态力学性能测试,借助扫描电子显微镜 (scanning electron microscope, SEM) 和电子背散射衍射 (electron backscatter diffraction, EBSD) 技术表征试样在不同阶段的微观组织以及冲击疲劳失效后的断口形貌,研究纯钛在冲击疲劳失效过程中的循环硬化/软化规律及其微观演化机制。结果表明:通过改变子弹长度可以实现应变控制的冲击疲劳寿命测试;Manson-Coffin疲劳寿命模型可以较好地反映纯钛的冲击疲劳寿命与应变幅值之间的关系;纯钛在冲击疲劳失效过程中表现出循环硬化的现象,这主要是疲劳过程中孪生变形引起的细晶强化和塑性变形引起的应变硬化共同作用的结果,纯钛的冲击疲劳损伤主要表现为变形能力的损失。
基于传统的分离式霍普金森拉杆系统,设计了应变控制的冲击疲劳寿命测试实验,研究了冲击疲劳加载下纯钛的微观演化机制及冲击疲劳对材料宏观力学行为的影响。通过对不同冲击疲劳试验阶段的试样开展准静态力学性能测试,借助扫描电子显微镜 (scanning electron microscope, SEM) 和电子背散射衍射 (electron backscatter diffraction, EBSD) 技术表征试样在不同阶段的微观组织以及冲击疲劳失效后的断口形貌,研究纯钛在冲击疲劳失效过程中的循环硬化/软化规律及其微观演化机制。结果表明:通过改变子弹长度可以实现应变控制的冲击疲劳寿命测试;Manson-Coffin疲劳寿命模型可以较好地反映纯钛的冲击疲劳寿命与应变幅值之间的关系;纯钛在冲击疲劳失效过程中表现出循环硬化的现象,这主要是疲劳过程中孪生变形引起的细晶强化和塑性变形引起的应变硬化共同作用的结果,纯钛的冲击疲劳损伤主要表现为变形能力的损失。
2024, 44(1): 013104.
doi: 10.11883/bzycj-2022-0531
摘要:
针对航空发动机机匣材料ZL114A铝合金,构建描述该材料在较大温度范围下大变形及失效行为的材料模型。通过万能试验机及分离式霍普金森压杆试验装置测试ZL114A铝合金在常温准静态、高温和高应变率下的力学性能,分析温度和应变率对材料流动应力的影响。采用有限元程序和优化算法反求25~375 ℃内材料的硬化参数,结合高应变率(1310~5964 s−1)下材料的动态行为关系,构建包含塑性应变、温度及应变率的经验型本构模型。开展缺口拉伸、缺口压缩等试验并建立相对应的有限元模型,获取材料在不同应力三轴度下的失效应变,标定分段形式的Johnson-Cook (J-C)失效准则参数。通过不同温度下的平板侵彻试验和数值模拟验证失效准则及其参数的有效性。结果表明,ZL114A铝合金具有明显的应变硬化、温度软化及高应变率强化特性;具有应力饱和特征的Hockett-Sherby (H-S)硬化模型较为准确地描述材料大变形下的力学行为;构建的材料本构关系可以描述ZL114A铝合金在大应变、宽温度、高应变率下的力学行为;分段形式的失效准则具有预测不同温度下材料失效行为的能力。
针对航空发动机机匣材料ZL114A铝合金,构建描述该材料在较大温度范围下大变形及失效行为的材料模型。通过万能试验机及分离式霍普金森压杆试验装置测试ZL114A铝合金在常温准静态、高温和高应变率下的力学性能,分析温度和应变率对材料流动应力的影响。采用有限元程序和优化算法反求25~375 ℃内材料的硬化参数,结合高应变率(1310~5964 s−1)下材料的动态行为关系,构建包含塑性应变、温度及应变率的经验型本构模型。开展缺口拉伸、缺口压缩等试验并建立相对应的有限元模型,获取材料在不同应力三轴度下的失效应变,标定分段形式的Johnson-Cook (J-C)失效准则参数。通过不同温度下的平板侵彻试验和数值模拟验证失效准则及其参数的有效性。结果表明,ZL114A铝合金具有明显的应变硬化、温度软化及高应变率强化特性;具有应力饱和特征的Hockett-Sherby (H-S)硬化模型较为准确地描述材料大变形下的力学行为;构建的材料本构关系可以描述ZL114A铝合金在大应变、宽温度、高应变率下的力学行为;分段形式的失效准则具有预测不同温度下材料失效行为的能力。
2024, 44(1): 013105.
doi: 10.11883/bzycj-2023-0128
摘要:
为了探究泡沫金属恒定应变率动态拉伸力学行为,基于3D Voronoi模型,采用双向拉伸加载方式和1.55倍等效胞孔直径高度的试件,实现了5000 s−1恒定高应变率动态拉伸条件下泡沫金属力学性能测试数值模拟实验,模拟结果显示:动态拉伸过程满足应力均匀性和变形均匀性要求,且试件破坏位置合理;在恒定应变率(0.5~5000 s−1)动态拉伸时,泡沫金属的破坏应变基本不受应变率的影响;当应变率不超过500 s−1 时,破坏应力受应变率影响很小,当应变率在 500~5000 s−1 时,破坏应力随着加载速率的增大而线性增大。
为了探究泡沫金属恒定应变率动态拉伸力学行为,基于3D Voronoi模型,采用双向拉伸加载方式和1.55倍等效胞孔直径高度的试件,实现了5000 s−1恒定高应变率动态拉伸条件下泡沫金属力学性能测试数值模拟实验,模拟结果显示:动态拉伸过程满足应力均匀性和变形均匀性要求,且试件破坏位置合理;在恒定应变率(0.5~5000 s−1)动态拉伸时,泡沫金属的破坏应变基本不受应变率的影响;当应变率不超过500 s−1 时,破坏应力受应变率影响很小,当应变率在 500~5000 s−1 时,破坏应力随着加载速率的增大而线性增大。
2024, 44(1): 013301.
doi: 10.11883/bzycj-2023-0156
摘要:
为分析空心弹高速入水的机理及其特性,基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、Realizable k-ε湍流模型,引入Schnerr-Sauer空化模型和重叠网格技术对空心弹高速入水进行数值模拟研究,获得了通孔孔径和头部形状对空心弹的空化特性、空泡形态和入水运动特性的影响规律。研究显示数值计算的空泡形态和入水速度、位移曲线与实验结果吻合较好,验证了数值模拟方法的可行性。结果表明:当通孔孔径不同时,通孔孔径越大,空化现象越明显,通孔射流越长,但对空泡半径的影响不大;通孔孔径越小,空泡闭合时间越早,与水面碰撞产生的阻力系数峰值越高,空心弹入水稳定后其阻力系数也越大;无量纲直径在0.575~0.600之间时,空心弹的运动最为稳定。当头部锥角不同时,头部锥角越大,空泡直径越大,空化现象出现得越晚,但空化生成的速度更快;随着头部锥角的增大,阻力系数变大,空心弹的速度衰减变快,相同时间运动的距离较短;头部锥角越大,俯仰角的变化越小,空心弹的运动越稳定。
为分析空心弹高速入水的机理及其特性,基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、Realizable k-ε湍流模型,引入Schnerr-Sauer空化模型和重叠网格技术对空心弹高速入水进行数值模拟研究,获得了通孔孔径和头部形状对空心弹的空化特性、空泡形态和入水运动特性的影响规律。研究显示数值计算的空泡形态和入水速度、位移曲线与实验结果吻合较好,验证了数值模拟方法的可行性。结果表明:当通孔孔径不同时,通孔孔径越大,空化现象越明显,通孔射流越长,但对空泡半径的影响不大;通孔孔径越小,空泡闭合时间越早,与水面碰撞产生的阻力系数峰值越高,空心弹入水稳定后其阻力系数也越大;无量纲直径在0.575~0.600之间时,空心弹的运动最为稳定。当头部锥角不同时,头部锥角越大,空泡直径越大,空化现象出现得越晚,但空化生成的速度更快;随着头部锥角的增大,阻力系数变大,空心弹的速度衰减变快,相同时间运动的距离较短;头部锥角越大,俯仰角的变化越小,空心弹的运动越稳定。
2024, 44(1): 015101.
doi: 10.11883/bzycj-2023-0102
摘要:
随着结构配置和冲击能量等主要影响因素的变化,钢筋混凝土梁的冲击动力响应和破坏模式会发生转化。开展不同配置的钢筋混凝土梁的落锤冲击试验,综合测量获得冲击力、支座反力、钢筋与混凝土应变、冲击局部与结构整体变形等参数,重点分析不同混凝土强度、不同纵筋/箍筋配置以及不同冲击速度对钢筋混凝土梁的动力响应以及破坏模式的影响规律。试验表明:低速撞击下钢筋混凝土梁的位移峰值、残余位移随冲击速度的提高而增大,均与冲击动能与极限静承载力之比存在近似线性关系;混凝土强度越高、纵筋配筋率越高,相同冲击条件下梁所受的撞击力峰值越大,但整体位移响应越小;配箍率的变化对结构的局部响应和整体响应的影响均较小;结构受到撞击时剪切效应在前,弯曲效应在后,斜裂缝先于垂直裂缝出现;依据结构的破坏极限状态,判断梁在冲击作用下存在的弯曲破坏、弯剪破坏、剪切破坏和冲切破坏等4种破坏模式,结果表明:相同结构配置条件下,随冲击速度的不断提高,钢筋混凝土梁由弯曲破坏向弯剪破坏、剪切破坏和冲切破坏转化;冲击速度相同时,提高混凝土强度、配箍率或降低纵向钢筋配筋率,梁的破坏模式逐步由冲切、剪切破坏向弯曲破坏模式转化。结构的冲击破坏模式及其转化规律能够为结构的抗撞设计与防护提供参考。
随着结构配置和冲击能量等主要影响因素的变化,钢筋混凝土梁的冲击动力响应和破坏模式会发生转化。开展不同配置的钢筋混凝土梁的落锤冲击试验,综合测量获得冲击力、支座反力、钢筋与混凝土应变、冲击局部与结构整体变形等参数,重点分析不同混凝土强度、不同纵筋/箍筋配置以及不同冲击速度对钢筋混凝土梁的动力响应以及破坏模式的影响规律。试验表明:低速撞击下钢筋混凝土梁的位移峰值、残余位移随冲击速度的提高而增大,均与冲击动能与极限静承载力之比存在近似线性关系;混凝土强度越高、纵筋配筋率越高,相同冲击条件下梁所受的撞击力峰值越大,但整体位移响应越小;配箍率的变化对结构的局部响应和整体响应的影响均较小;结构受到撞击时剪切效应在前,弯曲效应在后,斜裂缝先于垂直裂缝出现;依据结构的破坏极限状态,判断梁在冲击作用下存在的弯曲破坏、弯剪破坏、剪切破坏和冲切破坏等4种破坏模式,结果表明:相同结构配置条件下,随冲击速度的不断提高,钢筋混凝土梁由弯曲破坏向弯剪破坏、剪切破坏和冲切破坏转化;冲击速度相同时,提高混凝土强度、配箍率或降低纵向钢筋配筋率,梁的破坏模式逐步由冲切、剪切破坏向弯曲破坏模式转化。结构的冲击破坏模式及其转化规律能够为结构的抗撞设计与防护提供参考。
2024, 44(1): 015102.
doi: 10.11883/bzycj-2023-0003
摘要:
基于大口径发射平台进行了155 mm杀伤爆破榴弹毁伤钢纤维混凝土结构的试验,得到了打击不同位置时结构的破坏情况;结合LS-DYNA数值模拟,分析了不同打击位置和不同命中速度下钢纤维混凝土结构的毁伤效应,讨论了侵彻与爆炸联合作用下钢纤维混凝土结构的损伤过程和破坏模式。结果表明:钢纤维混凝土结构在155 mm榴弹作用下,配置钢筋的顶板和侧墙发生较轻的爆炸成坑破坏,无配筋的前墙发生严重的爆炸震塌破坏。SPG (smooth particle Galerkin method)-结构化ALE (arbitrary Lagrange-Euler)(S-ALE)流固耦合算法能够有效预测钢筋混凝土结构在侵彻和爆炸共同作用下的损伤发展过程和破坏模式。大口径弹体侵彻有限边界靶的加速度时程曲线特征为突增骤减单峰值形式,弹体速度呈现先快速降低后缓慢减小的特征;靶标在基于侵彻损伤的爆炸作用下,主要破坏模式为混凝土块大量崩塌和裂缝的生长,且随着侵彻速度的增加,爆炸造成的毁伤由局部破坏向结构整体破坏发展;混凝土破碎区内,垂直于弹体的钢筋在侵彻作用下达到屈服,板顶和板底的钢筋在爆炸后达到屈服。
基于大口径发射平台进行了155 mm杀伤爆破榴弹毁伤钢纤维混凝土结构的试验,得到了打击不同位置时结构的破坏情况;结合LS-DYNA数值模拟,分析了不同打击位置和不同命中速度下钢纤维混凝土结构的毁伤效应,讨论了侵彻与爆炸联合作用下钢纤维混凝土结构的损伤过程和破坏模式。结果表明:钢纤维混凝土结构在155 mm榴弹作用下,配置钢筋的顶板和侧墙发生较轻的爆炸成坑破坏,无配筋的前墙发生严重的爆炸震塌破坏。SPG (smooth particle Galerkin method)-结构化ALE (arbitrary Lagrange-Euler)(S-ALE)流固耦合算法能够有效预测钢筋混凝土结构在侵彻和爆炸共同作用下的损伤发展过程和破坏模式。大口径弹体侵彻有限边界靶的加速度时程曲线特征为突增骤减单峰值形式,弹体速度呈现先快速降低后缓慢减小的特征;靶标在基于侵彻损伤的爆炸作用下,主要破坏模式为混凝土块大量崩塌和裂缝的生长,且随着侵彻速度的增加,爆炸造成的毁伤由局部破坏向结构整体破坏发展;混凝土破碎区内,垂直于弹体的钢筋在侵彻作用下达到屈服,板顶和板底的钢筋在爆炸后达到屈服。
2024, 44(1): 015201.
doi: 10.11883/bzycj-2022-0366
摘要:
为了快速评估近场近地爆炸荷载下建筑柱的动力响应和破坏模式,通过数值仿真方法,探究了近场近地爆炸工况下冲击波在建筑柱迎爆面的分布规律,并提供了该工况下的爆炸荷载简化模型。为此,首先利用已有实验数据验证数值模型,并建立典型近地近场爆炸工况的数值模型,然后研究比例爆距和比例爆高对建筑柱冲击波特征参数的影响规律,最后拟合出柱迎爆面反射冲量和正相超压持续时间的计算公式,将柱迎爆面各点爆炸荷载转化为等效三角形荷载模型,为工程实践中建筑柱遭受近场近地爆炸作用下的抗爆设计提供荷载输入。研究结果表明:当比例爆高小于0.3 m/kg1/3、比例爆距在0.4~0.6 m/kg1/3范围时,最大反射冲量沿柱高可简化为三折线分布;当比例爆距在0.6~1.4 m/kg1/3范围时,最大反射冲量沿柱高可近似简化为双折线分布;在同一比例爆距和比例爆高工况下,随着炸药当量的增加,柱迎爆面相同比例高度处反射超压峰值保持不变而反射冲量正比于当量的立方根。
为了快速评估近场近地爆炸荷载下建筑柱的动力响应和破坏模式,通过数值仿真方法,探究了近场近地爆炸工况下冲击波在建筑柱迎爆面的分布规律,并提供了该工况下的爆炸荷载简化模型。为此,首先利用已有实验数据验证数值模型,并建立典型近地近场爆炸工况的数值模型,然后研究比例爆距和比例爆高对建筑柱冲击波特征参数的影响规律,最后拟合出柱迎爆面反射冲量和正相超压持续时间的计算公式,将柱迎爆面各点爆炸荷载转化为等效三角形荷载模型,为工程实践中建筑柱遭受近场近地爆炸作用下的抗爆设计提供荷载输入。研究结果表明:当比例爆高小于0.3 m/kg1/3、比例爆距在0.4~0.6 m/kg1/3范围时,最大反射冲量沿柱高可简化为三折线分布;当比例爆距在0.6~1.4 m/kg1/3范围时,最大反射冲量沿柱高可近似简化为双折线分布;在同一比例爆距和比例爆高工况下,随着炸药当量的增加,柱迎爆面相同比例高度处反射超压峰值保持不变而反射冲量正比于当量的立方根。
2024, 44(1): 015901.
doi: 10.11883/bzycj-2023-0020
摘要:
光伏电池由于具有较高的光电转化效率,在沙漠等太阳能充足的地方被广泛应用。但在沙尘长期冲击的环境下,光伏电池内部结构易出现累积损伤,使光电转化效率大幅降低。因此,研究颗粒群冲击条件下光伏电池的力-电行为具有重要意义。基于分离式霍普金森压杆,发展了一种驱动较大尺寸颗粒群高速冲击的实验方法,并系统测量了不同冲击条件下,多晶硅光伏电池的损伤行为与光电转化性能衰减规律。研究结果表明,随着颗粒直径、冲击速度和数密度的增加,光伏电池的光电转换效率快速降低;颗粒冲击后光伏电池表现出三种典型的损伤模式,并给出了对应的应力阈值条件。基于实验测试结果,发展了多晶硅光伏电池颗粒群冲击损伤诱导光电转化性能退化模型,为沙砾冲击环境下光伏电池光电性能衰减规律提供了有效的预测方法。
光伏电池由于具有较高的光电转化效率,在沙漠等太阳能充足的地方被广泛应用。但在沙尘长期冲击的环境下,光伏电池内部结构易出现累积损伤,使光电转化效率大幅降低。因此,研究颗粒群冲击条件下光伏电池的力-电行为具有重要意义。基于分离式霍普金森压杆,发展了一种驱动较大尺寸颗粒群高速冲击的实验方法,并系统测量了不同冲击条件下,多晶硅光伏电池的损伤行为与光电转化性能衰减规律。研究结果表明,随着颗粒直径、冲击速度和数密度的增加,光伏电池的光电转换效率快速降低;颗粒冲击后光伏电池表现出三种典型的损伤模式,并给出了对应的应力阈值条件。基于实验测试结果,发展了多晶硅光伏电池颗粒群冲击损伤诱导光电转化性能退化模型,为沙砾冲击环境下光伏电池光电性能衰减规律提供了有效的预测方法。