• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
最新录用栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
摘要:
格构柱常作为工程结构中主要承重构件,工程服役环境下不可避免地受到其他意外荷载的撞击,建筑结构在冲击载荷下的防护性能评价和优化设计是国防、土木等军民用领域关心的重点问题。本文对格构柱沿不同冲击方向进行了1:2缩比二次冲击实验,每次冲击能量相同,并与相同总能量下的单次冲击格构柱进行了对比,分析了格构柱在冲击荷载下的受力和变形特点。随后,基于实验验证的有限元模型对足尺格构柱进行连续二次冲击模拟,得到了在总能量不变的情况下遭受两次连续冲击的格构柱动力响应结果,分析了不同能量分配对冲击力、残余位移和残余动能的影响。结果表明:在相同总能量下,单次冲击作用下格构柱的位移大于二次冲击,通过数值模拟得到的最优能量分配可以将沿不同方向冲击的构件残余位移减少约12%;当格构柱第一次受到越大比例能量或第二次受到越小比例冲击能时,柱子吸收的总能量越小。研究结果可为此类荷载条件下格构钢柱的设计方法提供参考。
摘要:
为探究Zr基活性壳体的爆炸释能及对油盒的毁伤效果,采用合金熔炼浇铸方式制备了Zr基活性材料壳体,通过爆炸驱动试验,并结合高速摄影记录结果,对比等质量45号钢壳体,对爆炸火球参数、冲击波波速进行了观测,研究了不同材料壳体产生的破片对油盒的冲击效应。结果表明:与等质量钢壳体相比,爆炸驱动下Zr基活性材料壳体火光持续时间更长、冲击波波速更快,Zr基活性材料壳体在爆炸驱动下对空气冲击波具有强化作用;活性材料击穿油盒后引燃盒内燃油,具备引燃燃油能力,而等质量钢壳体未引燃盒内燃油。
摘要:
为研究锆基非晶合金破片侵彻碳纤维损伤机理和后效靶毁伤能力,采用12.7mm弹道枪开展了球型锆基非晶合金破片侵彻6mm厚碳纤维靶和后效2mm厚LY12靶组成的叠层靶和间隔靶的弹道枪试验研究,采用图像识别技术分析了后效LY12靶毁伤的面积。研究结果表明:碳纤维靶损伤面积与破片速度成正比且无明显扩孔反应,迎弹面主要为纤维剪切破坏和压缩变形损伤,背弹面则主要为拉伸撕裂破坏以及层间失效。随着速度的提高,碳纤维的剪切破坏比例逐渐增加;破片冲击相同设置靶板时,LY12靶毁伤面积随速度增加而增大,速度低于954.7m?s-1时,间隔靶后效靶LY12靶板毁伤面积小于叠层靶后效靶LY12靶毁伤面积,随着速度提高间隔靶后效LY12靶的毁伤面积快速提高,而叠合靶后效LY12靶的毁伤面积增长趋于平缓,且前者远大于后者。因此,高速撞击时,设置间隔靶对于后效毁伤更有利。
摘要:
准确评估钻地武器战斗部侵彻和装药运动爆炸(侵彻动爆)的连续作用是对防护结构遮弹层进行可靠设计的前提。首先,基于装药体积填充和侵彻爆炸分步耦合技术,提出了三阶段弹体侵彻动爆一体化有限元分析方法。通过与已有的装药运动爆炸试验以及普通混凝土(normal strength concrete, NSC)和超高性能混凝土(ultra-high performance concrete, UHPC)靶体的侵彻静爆试验结果进行对比,充分验证了提出方法对侵彻爆炸过程中爆炸波传播、靶体内应力峰值和开裂行为及其损伤演化描述的准确性。然后,基于105mm口径缩比弹体打击NSC靶体工况,对比了提出方法和传统侵彻静爆法预测靶体损伤破坏的差异,分析了侵彻爆炸应力场的叠加效应以及弹壳约束和断裂破片的影响,并基于弹载装药在不同时刻起爆下靶体的破坏特征,确定了战斗部最不利起爆时刻。最后,针对SDB、WDU-43/B和BLU-109/B三种原型战斗部打击工况开展数值仿真,其侵彻动爆作用下NSC和UHPC遮弹层破坏深度分别为1.33m、2.70m、2.35m和0.79m、1.76m、1.70m,进一步给出了相应的遮弹层临界震塌和临界贯穿厚度。结果表明,采用侵彻动爆一体化方法计算得到的破坏深度、临界震塌厚度和临界贯穿厚度较传统侵彻静爆法计算结果增大约5%~30%。
摘要:
为研究爆炸作用下碳纤维增强聚合物(CFRP)布加固砌体填充墙的抗爆性能及其设计方法,首先采用商用有限元软件LS-DYNA建立砌体填充墙的简化分离有限元模型及其CFRP布加固抗爆分析模型,通过与已有9组未加固和CFRP布加固砌体填充墙的野外爆炸试验结果对比,验证了所采用的墙体简化分离建模方法、砌体和CFRP布本构模型及其参数的适用性。进一步参考GB 50608-2020标准推荐的砌体墙CFRP抗震加固方式,通过对比分析爆炸作用下CFRP布加固原型砌体填充墙的动力行为,建议优先采用对角双向加固方式,其次是垂直双向和横向满铺加固方式,不建议采用竖向满铺和混合三向加固方式。最后,以同时满足CFRP布基本保持完整、墙体中心不发生砌块飞散,以及墙体中心最大面外挠度小于墙厚为设计目标,得出典型小轿车(227 kg TNT当量)和手提包炸弹(23 kg TNT当量)在不同比例距离爆炸时,对应6~9度抗震设防等级要求的三种拉结筋布置形式(无/截断/通长拉结筋)原型墙体需要加固的比例距离范围分别为0.8~2 m/kg1/3和0.2~1.2 m/kg1/3,进一步给出了最优CFRP布加固层数建议。
摘要:
为了研究冲击荷载作用下含铜矿岩的破碎块度与能量耗散之间的关系,借助分离式SHPB压杆试验装置,对含铜凝灰岩试件施加0.5 ~1.2MPa的冲击气压,采用标准圆孔筛对冲击后的矿岩碎块进行筛分,分析不同冲击荷载下含铜凝灰岩的力学特性及能量传递规律,并结合分形理论构建耗散能与矿岩破碎块度之间的关系。最后基于有限离散元(FDEM)数值计算方法模拟矿岩的裂纹扩展行为。结果表明:随着入射能的增加,透射能,耗散能,反射能三者能量分布规律基本保持一致,即透射能>耗散能>反射能;根据耗散能的不同,碎石块度分布也呈现出了明显的差异性,当耗散能由19.52 J提升至105.72 J时,矿岩的平均块度(ds)从27.98 mm降低至16.94 mm,分形维数(Db)提升了26.43%,表明耗散能越高,矿岩宏观破碎程度越剧烈,破碎块度的数目越多,碎块粒径越小,均匀性越好;FDEM数值计算方法的应用,为深入解析岩石断裂破坏特性提供了新的思路。
摘要:
裂隙对岩体动态力学特性的影响机制一直是岩石力学领域的一个重点与难点问题,而裂隙岩体动态损伤模型的建立则是解决这一问题的关键,因而备受关注。目前大多数的裂隙岩体动态损伤模型均是针对平直裂隙,而无法考虑裂隙粗糙度的影响,为此针对这一不足,首先基于前人提出的能够同时考虑裂隙几何参数、强度参数及变形参数的岩体宏观损伤变量计算模型,通过引入Barton建立的粗糙裂隙JRC-JCS抗剪强度模型,提出了能够同时考虑裂隙粗糙度的岩体宏观损伤变量计算模型。其次,将该计算模型引入到前人提出的考虑宏细观缺陷耦合的非贯通裂隙岩体单轴压缩动态损伤模型中,建立了能够同时考虑裂隙粗糙度的非贯通裂隙岩体单轴压缩动态损伤模型。最后,通过参数敏感性分析研究了裂隙粗糙度JRC、裂隙面基本摩擦角φb、裂隙长度2a对岩体动态力学特性的影响。以动态峰值强度为例,算例表明,当JRC由0分别增加到10和20时,岩体动态峰值强度由26.42MPa分别增加到27.28MPa和28.37MPa。当φb由0º分别增加到15º和30º时,岩体动态峰值强度由26.24MPa分别增加到27.28MPa和28.80MPa。当2a由1cm分别增加到2cm和3cm时,岩体动态峰值强度由31.37MPa分别降低至27.28MPa和23.90MPa。同时为了更精确地刻画裂隙面粗糙度的影响,将裂隙面分形维数引入到岩体动态损伤模型中,不但提高了模型计算精度,而且拓宽了其应用范围,更便于实际工程应用。
摘要:
生物软材料大多是高含水率的超软材料,其力学性能在宽应变率范围内随着应变率提高而非线性增强。然而由于实验条件限制,在中应变率下对超软材料进行大变形测试的显得比较困难。本研究设计并建造了一个15米长的双子弹电磁驱动长分离式霍普金森压杆(long split Hopkinson pressure bar, LSHPB)系统,可用于超软材料的大变形中应变率测试。该LSHPB系统和高速SHPB系统分别对进行了测试,比较二者的实验结果,验证了本套系统的可靠性。应用LSHPB系统测量了聚乙烯醇(polyvinyl alcohols, PVA)水凝胶在中应变率力学性能,并且结合已有的低和高应变率的数据分析,说明了中应变率动态性能测试的必要性。
摘要:
岩石动态本构模型对理解动载下岩石的力学行为和解决岩石动力学问题具有重要作用。基于连续介质损伤力学,建立了一个弹塑性损伤耦合的岩石动态本构模型。该模型以统一强度理论作为屈服准则,并引入动态拉压比充分反映应变率效应;采用有效塑性应变和体积塑性应变表示压损伤变量和用有效塑性应变表示拉损伤变量从而反映拉压条件下岩石不同的损伤演化规律;采用分段函数来刻画岩石拉压条件下的不同塑性硬化行为;基于Fortran语言和LS-DYNA用户材料自定义接口(Umat)对所建立的本构模型进行数值实现;通过岩石单轴和三轴压缩试验、岩石单轴拉伸试验和岩石弹道试验等三个经典算例对所建立的本构模型展开验证,结果表明,该本构模型能全面刻画岩石的动静态力学行为。
摘要:
摘 要:为揭示动荷载下硅砂的破碎特性及吸能效应,基于改进的分离式霍普金森杆(SHPB)研究了四种粒组砂样的动力响应特征。结果表明,粒径和应变率会影响砂的动态应力-应变行为。砂的变形可分为弹性、屈服和塑性三个阶段,试样的压实过程主要由屈服阶段的塑性压密和塑性阶段的破碎压密组成;颗粒相对破碎指数与应变率及有效粒径均近似呈正比关系,而与分形维数呈反比;颗粒粒度对吸能效率的影响随颗粒特性的不同而变化(矿物组成、粒径及分化程度等);相同应力水平下,颗粒粒径越大,能量吸收效率越高;相同加载应变率条件下,颗粒越大,试样的峰值应力越小。为提高砂的吸能效率和减小负荷水平,建议采用较大粒径的硅砂。
摘要:
一端中心起爆装药的圆柱套筒是破片型武器最常用的结构,其破碎产生的破片初速是评估杀伤威力和防护结构性能的重要参数。针对精确预测不同长径比(L/D)下圆柱套筒的初速分布问题,首先基于试验验证的数值模型研究了L/D对破片初速的影响,在此基本上,提出了适用于L/D≥1圆柱套筒的初速分布计算模型,该模型中添加了与L/D相关的受轴向稀疏波影响的修正项,最后,通过试验和数值模拟对所提出的初速计算模型进行了验证。研究结果表明:不同L/D下的破片初速分布均呈现两端初速低,中间高的变化趋势,且L/D越大,破片初速越大,当L/D达到5时,最大破片初速与Gurney公式计算结果之间的相对误差仅为1.99%;公式计算结果与试验结果和数值计算结果的平均误差不超过6%,表明了该模型在预测不同L/D下的破片初速分布是可靠的。研究工作可为破片毁伤威力评估及反恐工程中防护装置的结构设计提供参考。
摘要:
研究冲击作用下混凝土动态力学性质和裂纹处的动态温度,以钢-聚丙烯纤维混凝土(SPFRC)为研究对象,采用自搭建高速红外测温系统,其系统响应速率达到微秒级,并通过静态标定试验拟合混凝土温度曲线,再结合霍普金森压杆试验装置。结果表明:混凝土试件的温度演化与力学性能存在明显的耦合效应,钢纤维掺量对动力学性能和温度有很大的影响。具体而言,随着钢纤维的增加,混凝土抗压强度得到了提升;其中1.5%钢纤维掺量的试件表现出最佳的力学性能,而钢纤维掺量达到2%时,由于混凝土内部空隙增多,力学性能略有下降。在冲击过程中,裂纹处的动态温度效应呈现“台阶状”特征,温度变化分为两个阶段:在裂纹初期温度上升缓慢,而裂纹扩展后摩擦和剪切效应加剧,导致裂纹处温度急剧上升。不同钢纤维掺量对温度的变化影响有限,其峰值温度和峰值应力呈现相似规律,温度的主要变化由裂纹扩展和摩擦效应决定。采用了高速红外测温系统实时监测混凝土裂纹处温度变化,为混凝土裂纹扩展提供了新的监测手段。
摘要:
对于复杂结构的爆炸载荷估计,传统数值模拟方法计算耗时长,而基于神经网络的快速估计仅能进行点估计却无法给出结果的置信度。为此,将贝叶斯理论与深度学习结合,构建了复杂结构爆炸载荷快速估计的贝叶斯深度学习方法。通过开源数值模拟软件,构建爆炸当量、位置、速度等参数大范围变化下的复杂结构爆炸载荷数据,进而基于贝叶斯理论将深度学习模型参数视为随机变量,利用变分贝叶斯推断高效训练模型,在保证爆炸载荷快速估计精度的同时,赋予模型不确定性量化的能力。结果表明,该方法在训练数据以外的爆炸载荷快速估计误差约为12.2%,置信区间涵盖真实值的百分比超过81.6%,单点爆炸载荷估计时间不超过20ms。该方法是实现复杂结构爆炸载荷快速、可信估计的新方法。
摘要:
为探究超高速撞击条件下混凝土靶内的应力波特性,建立了基于PVDF压电应力计的应力波测试系统并对PVDF压电应力计标定方法开展了研究,测量了克级柱形93W钨合金弹体超高速撞击条件下混凝土靶体内的应力波波形,并利用数值模拟方法对应力波的产生和传播机制进行分析,得到如下结论:(1)对PVDF压电应力计的动态特性参数进行标定,得到PVDF压电应力计的动态灵敏度系数为17.5±0.5 pC/N;(2)利用PVDF压电应力计得到了信噪比高的超高速撞击条件下混凝土靶内的应力波形;(3)数值模拟得到的应力波形与实验测得的波形特征吻合较好,应力波峰值的模拟结果与实验结果最大偏差不超过20%,能够为机理探索提供一个有用的工具。(4)利用数值模拟方法进一步认识了靶体内应力波的特征和产生衰减机制。
摘要:
长期以来,对爆炸冲击波作用下生物体肺冲击伤力学特性的研究并不充分。由于人体试验的复杂性,动物试验和经过动物试验验证的精细化动物有限元模型是开展研究的重要手段。本文首先建立了小香猪胸部有限元模型,借助新研制的PVDF柔性冲击波压力传感器测试了激波管试验中动物体表压力,验证了有限元模型的准确性。其次,使用已验证的模型开展不同比例距离下猪肺部损伤特性研究,分析在不同强度的冲击波下肺部损伤程度与损伤区域,并建立了胸肺部表皮压力峰值与肺损伤的关系。最后,通过开展爆炸试验,获得了不同比例距离下小香猪的肺部损伤情况和胸部表皮压力曲线,验证了所建立的胸肺部表皮压力峰值与肺损伤关系的正确性。
摘要:
缩比模型试验是研究弹体侵彻规律的重要手段,模型试验结果与原型之间的尺寸效应是建立侵深计算方法必须解决的问题。依据已有基础理论推导了钻地弹侵彻岩石类靶体介质的应力与应变状态演化和弹体侵彻阻抗函数,得到了表征尺寸效应的弹径系数公式,并在常规钻地弹侵彻速度范围内对弹形系数和弹径系数作了简化分析,提出了常规钻地弹侵彻岩石类介质的实用计算公式,系数可直接由弹靶参数确定。结果表明,弹体侵彻阻抗主要影响因素为靶体波阻抗,尺寸效应的来源是靶体破坏区范围不满足几何相似律,弹形系数可简化为弹头长径比的线性函数,平头弹弹形系数为0.57,弹径系数由侵彻空腔半径与破碎区半径之比决定,对于常规钻地弹可取1.2~1.4。侵深理论公式与试验结果对比符合较好,具有较高可靠性。
摘要:
为了获得炸药爆轰产物状态方程,本文对RDX炸药进行了水下爆炸气泡膨胀过程试验,测试了水下爆炸气泡半径R-t和冲击波阵面Rs-t的变化规律,通过水下爆炸气泡膨胀过程中的能量守恒关系,获得了基于水下爆炸试验的爆轰产物JWL状态方程确定方法,对RDX水下爆炸气泡膨胀和冲击波阵面运动过程的分析计算,测定了RDX炸药爆轰产物JWL状态方程参数,并与圆筒试验获得参数进行了比较。结果表明,通过水下爆炸法与圆筒实验方法标定的JWL方程参数得到的气泡膨胀过程基本相同,但是水下爆炸法得到的气泡半径计算值与实验值在低压阶段的偏差更小。该方法提供了一种成本低、尺寸限制少、压力范围广的爆轰产物状态方程的测试途径。
摘要:
为探究U形通风采煤工作面瓦斯爆炸的传播规律并探讨瓦斯爆炸超压衰减对不同影响因素的敏感性,利用Fluent模拟软件并结合某矿3906工作面情况开展了数值模拟研究。首先,根据瓦斯爆炸机理搭建数学模型,并依据前人实验方案进行数值模拟,以此验证该数学模型的可靠性;其次,依序进行模拟关键参数的优化,并得到关键参数网格尺寸、迭代步长和点火温度的最合理设置分别为0.2 m、0.05 ms和1900 K,通过拟合得到工作面爆炸超压峰值及其到达时间与爆心距之间的函数关系。通过正交试验分析瓦斯爆炸超压衰减对不同影响因素的敏感性。极差分析得到温度、瓦斯浓度和瓦斯积聚区压力3个主控因素的极差值依次减小,此次模拟中温度对于爆炸超压衰减的影响最显著,其中R值达到5.928;运用方差分析对影响瓦斯爆炸超压衰减率的主控因素进行显著性研究,温度的方差值最大,瓦斯积聚区压力的方差值次之,瓦斯浓度的方差值最小,其中温度的显著值F达到31.835,其余两项不显著。
摘要:
薄片炸药加载技术是实验室考核X射线辐照下空间结构动态响应的重要手段。为实现新型空间飞行器结构考核所需的超低比冲量化爆加载载荷,研制了以PETN为主炸药、以高聚物橡胶为黏结剂的超薄片炸药。薄片炸药的PETN质量分数为90%~92%,厚度范围为0.15~0.50 mm,密度范围为1.63~1.68 g/cm3,爆速范围为7.44~7.71 km/s。基于炸痕法的爆轰性能实验结果表明:厚度为0.15~0.50 mm的薄片炸药可由装药线密度为0.2 g/m的柔爆索可靠引爆,厚度为0.20~0.50 mm的炸药条均能可靠传爆。利用冲击摆测量装置对不同直径、不同厚度薄片炸药的比冲量特性进行了测试研究,结合理论分析,给出薄片炸药比冲量和厚度成正比,比例系数为3418.56 Pa?s/mm,成功实现了厚0.2 mm、约680 Pa?s超薄片炸药的研制。
摘要:
针对钻地武器战斗部侵彻爆炸作用下块石混凝土遮弹层的抗力评估与工程设计,首先提出了块石混凝土遮弹层的有限元建模方法,通过与含不同粗骨料类型(刚玉和玄武岩)、粒径(5~15mm、5~20mm、35~45mm和65~75mm)和体积率(15%和30%)的超高性能混凝土靶体的准静态和弹体侵彻试验对比,充分验证了建模方法、材料本构模型和参数以及有限元分析方法等的可靠性。进一步以小直径炸弹SDB侵彻半无限厚块石混凝土靶体为基准工况,定量分析了块石类型(刚玉、玄武岩和花岗岩)和无量纲块石粒径(0.3~2.2倍弹径)对侵彻深度的影响,确定了块石混凝土遮弹层的最优设计原则。最后开展了三种典型原型钻地武器战斗部(SDB、WDU-43/B和BLU-109/B)的侵彻效应分析,定量对比了普通强度混凝土(NSC)、超高性能混凝土(UHPC)和刚玉块石混凝土(CRC)三种遮弹层的抗侵彻能力,提出了原型战斗部侵彻爆炸作用下刚玉块石混凝土遮弹层的工程设计方法。结果表明:粒径为1.3~1.7倍弹径的CRC遮弹层抗侵彻性能最优;三种战斗部侵彻作用下最优设计CRC遮弹层的侵彻深度分别为0.29m、0.78m和0.68m,较NSC和UHPC遮弹层分别降低了61.8%~64.1%和43.3%~58.0%;三种战斗部侵彻爆炸作用下CRC遮弹层的临界贯穿及震塌厚度分别为0.52m、1.22m和1.50m及1.11m、2.26m和3.17m,与NSC和UHPC遮弹层相比,临界贯穿厚度分别降低了60.5%~64.0%和43.3%~58.0%,临界震塌厚度分别降低了61.8%~69.1%和34.7%~40.5%。
摘要:
针对航行体高速入水时的缓冲降载问题,设计了适用的缓冲头罩及多种开孔形式的缓冲泡沫构型,基于任意拉格朗日-欧拉方法,建立了航行体高速入水缓冲降载数值计算模型。并通过数值仿真对不同开孔形式的缓冲泡沫降载性能进行了深入研究。结果表明,多孔缓冲泡沫在分散航行体入水冲击力及吸收冲击能量方面表现出显著优势,具有更好的缓冲效果。同时,缓冲头罩在入水时会发生局部渐进破碎,缓冲罩壳与航行体之间的连接器处的缓冲头罩外壁面的变形和破裂是由于撞水时产生的应力集中分布引起的。多孔泡沫接触水面时,前端部分会进入坍塌阶段,吸收大量能量并产生塑性变形,孔隙减少,此阶段为缓冲泡沫的主要能量吸收阶段。相比之下,不开孔泡沫的降载性能较差。因此,采用多孔泡沫是一种更优的航行体高速入水缓冲降载方案。
摘要:
弹体侵彻阻力是遮弹层抗侵彻性能研究及弹体结构优化设计最关注的问题。本文分析了现有钢筋有限长度固支梁理论模型局限。根据钢筋屈服准则研究和耗能分析,提出了弹体直接命中钢筋剪切-塑性铰链模型,以及弹体与钢筋侧面接触时的塑性弦模型,通过耗能分析得到了弹体直接阻力函数。以空腔膨胀理论模型为基础,根据弹体侵彻深度经验公式计算结果,得到了钢筋间接影响下混凝土阻力方程。通过与已有试验数据对比,验证了理论模型的合理性。通过分析钢筋屈服强度、直径、网眼尺寸等配筋方式,以及弹体命中部位对遮弹层抗侵彻性能的影响,给出了遮弹层配筋设计建议:相邻两层钢筋网错孔设置;钢筋网眼与弹体直径比值宜设为0.5-0.8;应结合钢筋极限塑性应变进行高强钢筋选择。
摘要:
炸药内爆后燃效应会释放更多能量,使准静态压力增大。为了预测密闭环境活性材料与炸药环状复合后内爆准静态压力,首先归纳了已有碳氢氧氮炸药考虑后燃效应内爆准静态压力计算模型,在此基础上提出了一种适用于活性材料与炸药环状复合的准静态压力计算模型,然后进行活性材料与炸药复合装药、含铝炸药的内爆试验,利用试验获得的数据对模型精度进行验证,最后对比分析两种炸药内爆准静态压力试验结果,将计算模型推广至一般含铝炸药,并利用文献数据验证。研究结果表明所建立的复合炸药考虑后燃准静态压力修正模型与试验数据、文献数据吻合较好,平均误差为9.2%,最大误差16.0%;对一般含铝炸药的计算结果平均误差为12.1%,最大误差20.6%。研究成果可为炸药内爆准静态压力预测提供理论支持。
摘要:
摘要:为了获得间隙尺寸对飞片起爆TATB基钝感炸药到爆轰距离的影响特性,采用激光多普勒测速技术及瞬态太赫兹波多普勒干涉测速技术对不同间隙飞片起爆TATB基钝感炸药的动作过程开展实验研究,获取了钛飞片在0~20 mm间隙内的速度发展历时、击靶速度及形貌,给出了TATB基钝感炸药在不同间隙起爆下的到爆轰距离。结果表明:随着起爆间隙的增大,TATB基钝感炸药的到爆轰距离呈非单调变化特征,与飞片速度所处阶段相关。飞片起爆炸药的五个速度阶段中,处在飞片主体与层裂层融合完成阶段的飞片起爆能力最强,隔层起爆次之,层裂层发生前的速度衰减阶段与层裂层-飞片主体融合过程中的飞片起爆能力最弱。
摘要:
为了研究椭圆类截面弹体侵彻多层间隔钢靶的弹道特性,开展了典型弹体侵彻多层间隔Q355B钢靶的试验,基于LS-DYNA软件开展有限元仿真研究,得到了弹体在侵彻过程中的姿态偏转和弹道参数,分析了弹体的偏转机制,获得了截面形状、截面压缩系数、初速、滚转角和着角等弹靶参数对椭圆类截面弹体侵彻弹道特性和姿态偏转特性的影响规律。研究结果表明:滚转角为0°时,圆截面弹体侵彻弹道稳定性优于椭圆类截面弹体;弹体截面压缩系数越大,弹体侵彻弹道稳定性越好;弹体初速越大,弹体姿态偏转越小,侵彻弹道越平稳;滚转角为90°时,椭圆截面和非对称椭圆截面弹体在入射平面内的侵彻弹道最稳定,并且两种弹体在水平面内的弹道偏移量分别在滚转角为45°和90°时达到最大,非对称椭圆截面弹体在滚转角为钝角时的侵彻弹道稳定性优于锐角时的情况;弹体着角在[0°,50°]范围内时,弹体侵彻弹道稳定性随着角的增大先减弱后增强,着角在30°左右时弹体的姿态偏转和弹道失稳最严重;弹体以较正姿态贯穿薄钢靶时,在弹头部侵彻阶段就已经与靶体分离;弹体以较大攻角贯穿薄钢靶时,弹靶接触主要发生在弹体的上表面。
摘要:
在简易自制爆炸装置的近场爆炸中,防护结构常受到爆炸冲击波和破片的复合作用,为了提高结构的防护性能,设计并制备了含“泡沫铝/纤维”夹芯复合结构材料,通过开展“爆炸+侵彻”实验,研究复合结构在爆炸冲击波和高速破片复合作用下的失效模式,重点讨论爆炸冲击波和破片两种载荷时序性对毁伤特性的影响,并分析不同材料的吸能机理。研究结果表明:爆距的变化直接影响爆炸冲击波和破片作用的时序性,在本文讨论的工况中,当爆距大于600mm时,破片先于冲击波作用。在冲击波和破片的复合作用下,铝面板除了破片的贯穿破坏外,还伴有局部凹陷变形;泡沫铝自身胞孔结构在冲击载荷作用下发生压溃变形和胞壁屈服碎裂;弹孔处纤维则在破片的侵彻下发生拉伸变形和断裂,并伴有高温失效;铝背板主要以瓣裂撕裂破坏为主。在两种时序性作用下,弹孔的存在削弱了冲击波对铝面板的作用,后序夹芯结构材料和铝背板的变形破坏程度较前序材料更为严重。本研究的开展对轻质复合结构材料在有限空间近爆防护领域中的应用和功能设计提供了技术依据。
摘要:
等离子体爆破破岩技术具有绿色、高效、可控的特点,在深部岩石破碎方面中具有很好的应用前景。本文开展了4组不同围压作用下的等离子体砂岩爆破试验,通过CT扫描和三维重构,对比分析岩石内部裂纹的形态结构和分布状况,研究等离子体爆破破岩技术在不同围压作用下破岩效果,通过LS-DYNA进行数值模拟,探究不同围压作用下等离子体爆破破岩机理以及岩体在爆破过程中内部裂纹扩展、分布及损伤演化规律。结果表明:相同电压作用下,随着三向围压的升高,岩石表面裂纹的数量和分布范围都呈逐渐减小的趋势,砂岩内部裂纹的复杂程度和贯通程度显著降低,其次在等离子体爆破产生的动态应力场和围压作用产生静态应力耦合场中,等离子体爆破产生的冲击波在爆炸初始阶段作用效果更大,不同围压作用下岩石的裂纹形态和中心膨胀区域没有出现明显差异,随着冲击波的衰减,围压主要在等离子体爆破中后期发挥决定作用,抑制岩体的裂纹扩展和损伤演化。同时,随着围压升高,其对岩体内部裂纹扩展的抑制效果越显著,导致岩石内部三维裂纹的体分形维数和损伤度均近似呈线性减小。
摘要:
H型钢柱在工业厂房、停车场等应用时容易遭受吊装荷载和车辆撞击作用。基于上述背景,本文在前期试验研究基础上,通过有限元开展H型钢柱撞击下及撞击后力学性能全过程分析。首先通过机理分析,获得不同轴压比影响下试件的变形特征、应力与耗能发展。结果表明,侧向撞击下H型钢柱以整体变形为主,上翼缘与腹板分别发生局部凹陷与平面外屈曲;撞击力时程曲线呈现明显的平台段,预加轴力明显削弱试件的抗撞能力。其次,建立108个参数分析模型,重点研究荷载参数(撞击质量m、撞击速度v与轴压比n)、材料参数(屈服强度fy)与几何参数(截面面积A与试件长度L)对撞击力、撞击变形和剩余承载力的影响规律。最后,基于响应面法提出了多因子交互影响的撞击下整体与局部变形及撞击后剩余承载力预测公式,可用于H型钢柱撞击全过程损伤评估与设计。
摘要:
为降低瓦斯爆炸对煤矿作业人员和煤炭安全开采的巨大威胁,对巷道中不同体积的瓦斯-空气混合气体爆炸超压和冲击气流速度随传播距离衰减的规律进行了深入研究。首先,根据量纲分析法和能量相似律,综合考虑巷道中瓦斯爆炸超压、冲击气流速度随传播距离衰减的影响因素,建立了超压和冲击气流速度随传播距离衰减的无量纲式。其次,对大尺寸巷道中的实验数据进行回归分析,得到了超压、冲击气流速度的衰减模型及二者之间的关系式。最后,对所建立的衰减模型和关系式进行验证。结果表明:混合气体能量、气体积聚量、测点距离、水力直径和巷道截面积是超压、冲击气流速度衰减的主要影响因素;超压、冲击气流速度均与混合气体聚积量正相关,起始超压和冲击气流速度越大,衰减越迅速;衰减模型理论值与试验值的相对误差及关系式理论值与试验值的相对误差均控制在10%左右,数据整体吻合度较高,验证了其可靠性,能够更简洁直观的描述瓦斯爆炸传播规律,实现对超压、气流速度的快速计算。
摘要:
岩石中存在许多微裂纹和微孔洞,这些微裂纹和微孔洞在动荷载作用下会萌生、扩展和聚并,导致岩石失稳和破坏。在进行爆破开挖时,预留岩体会受到循环爆破产生的动载荷影响,产生累积损伤,从而导致岩体强度降低,甚至破坏。为了模拟这一物理过程,将现有的能够较好地描述岩石动力损伤的岩石动力损伤本构模型通过二次开发嵌入到FLAC中,用于分析锁固型岩质边坡在循环爆破作用下的损伤效应及稳定性。结果表明:考虑岩质边坡累积损伤效应后,随着循环爆破次数的增加,边坡稳定性逐渐降低。对于锁固型岩质边坡,锁固段的破坏首先发生在两端,然后向中间扩散,岩体在其中呈现递进破坏模式。由于考虑了岩质边坡的累积损伤,每次爆破后边坡的安全系数都会减小。当不考虑累积损伤时,边坡的安全系数基本不变。另外,锁固段在软弱夹层中的位置影响边坡的破坏模式和稳定性。因此,在进行类似工程活动时,应考虑岩体的累积损伤效应,避免工程事故的发生。
摘要:
人工智能方法是预测爆炸荷载的新手段,但现有方法主要用于预测爆炸冲击波的超压峰值或冲量,而预测反射超压时程的研究不多。针对这一问题,以平面冲击波绕射桥梁主梁为对象,提出了一种基于主成分分析(PCA)和误差反向传播神经网络(BPNN)的桥梁表面反射超压时程的预测模型。该预测模型利用PCA降维处理时程数据,基于多任务学习的BPNN算法,提出了考虑超压峰值和最大冲量影响的损失函数,使模型能有效预测不同入射强度下的桥梁冲击波荷载时程。通过比较多任务学习模型、多输入单输出模型和多输入多输出模型等三种BPNN模型,发现多任务学习模型的预测精度最高,而多输入多输出模型的预测能力较差;采用多任务学习模型预测得到的桥梁表面各测点位置的反射超压时程、超压峰值精度较高,R2分别为0.790和0.985,作用在箱梁上的合力时程和扭矩时程预测值也与真实值较为吻合。同时,该模型在对内插值预测的表现优于外推值预测,但其在预测外推值方面同样展现出了一定的能力。
摘要:
螺旋桨是舰船推进系统的核心部件,其运动稳定性和效率直接影响着舰船的性能。当前推进轴系抗冲击研究多将螺旋桨等效成均质圆盘忽略其结构特征,不能准确得到水下爆炸作用下螺旋桨的瞬态毁伤特征。故本文考虑螺旋桨的结构特征,基于湿模态分析法得到实体建模优于壳体建模,开展了远场冲击波作用下螺旋桨物面空化冲击动响应及毁伤特征分析。并结合螺旋桨高速旋转状态下产生的水动力空化现象,进一步分析螺旋桨瞬态毁伤特征规律。研究表明:在0度与90度攻角下,冲击波入射波作用于螺旋桨表面的物面载荷更高,但存在一个上限值,其与螺旋桨结构特征有关。在计及水动力空化状态下,桨叶的应力水平变化较为一致;桨叶主要塑性损伤区为叶根处,但存在局部塑性和完全塑性两种模式。本文探讨了远场爆炸下螺旋桨毁伤与空化特征,研究结果可为推进轴系及螺旋桨抗冲击防护提供参考。
摘要:
为了提高核乏燃料储运容器等球墨铸铁结构在低温、冲击环境下的服役安全性,本文通过改进的霍普金森压杆技术对球墨铸铁材料在常温与低温(20℃、-40℃、-60℃和-80℃)下的I型动态断裂韧性进行了测试,并着重研究了材料的韧脆转变行为。试样的起裂时间由应变法确定,采用实验-数值方法确定了裂尖动态应力强度因子和材料的I型动态断裂韧性。结果表明,在相同冲击速度加载下,球墨铸铁的I型动态断裂韧性随温度的降低而明显降低,起裂时间也随温度降低而减少。通过对断口的微观分析,发现在不同温度下材料存在失效机理的转变。随着温度的降低,断口韧窝减少,河流花样以及解理台阶增多。通过对韧性与脆性微观形貌特征进行量化统计,表明了材料在低温下存在延性特征变弱、脆性增强的规律,这种韧脆转变现象与材料断裂韧性的测试结果相吻合。
摘要:
为明确泡沫混凝土厚度和强度对组合式防护结构抗爆性能的影响,充分发挥和合理利用泡沫混凝土良好的消波特性,首先通过试验及数值模拟探讨不同泡沫混凝土厚度和强度对组合式防护结构抗爆性能的影响,并分析分层梯度泡沫混凝土在爆炸波作用下的消波特性。然后将组合式防护结构与采用中粗砂为分配层的传统成层式结构进行对比分析验证其优越性,在此基础上,总结凝练出组合式防护结构的主体结构荷载可控的设计理念。结果表明,利用泡沫混凝土材料较长的屈服平台和较低的波阻抗,以泡沫混凝土作为能量调控层,通过设计泡沫混凝土强度等级(密度等级)和厚度以及采用多层梯度泡沫混凝土,可使得作用于主体结构上的爆炸荷载峰值恰为泡沫混凝土屈服强度,实现对主体结构上荷载的可控设计,有效解决了中粗砂为分配层的传统成层式结构不易控制作用于主体结构上荷载的问题。研究结果可为抗新型钻地弹的防护设计提供重要参考。
优先出版栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
摘要:
实验选用粉煤灰中的漂珠作为敏化剂和惰性添加剂来制备低爆速乳化炸药,研究了漂珠粒径和含量对乳化炸药爆炸特性和安全性的影响;采用探针法、铅柱压缩法和空中爆炸测试法分别测得添加不同粒径含量漂珠乳化炸药的爆速、猛度和空中爆炸冲击波参数,并通过储存期实验和热分析实验对乳化炸药进行安全性测试。实验结果表明,乳化炸药的爆速、猛度、冲击波峰值压力、正冲量和正压作用时间均随漂珠含量的增加呈先增大后降低的趋势。当漂珠含量为15%时,乳化炸药的爆轰性能最佳;当漂珠含量为45%时,炸药的爆速显著降低,爆速范围在21912312 m/s,可满足爆炸焊接用炸药的使用条件。此外,发现漂珠含量相同时,添加D50=79 μm漂珠的乳化炸药爆轰性能要高于添加D50=116 μm和D50=47 μm漂珠的乳化炸药。储存期和热分析实验结果表明,添加漂珠的低爆速乳化炸药储存期显著优于传统添加黏土颗粒的低爆速乳化炸药,漂珠的加入并未引发乳化基质产生新的热分解反应,添加15%漂珠的乳化炸药的热分解活化能比乳化基质只增加了0.3%,说明了漂珠的加入并未对乳化基质热稳定性产生明显影响。
摘要:
为了更好地理解爆炸冲击波作用下头部的力学响应和损伤机制,利用计算机电子断层扫描与核磁共振医学图像获取了头部几何信息,开发了具有骨缝结构的精细化头部有限元模型。基于已有的激波管尸体实验,开展了正面、侧面与背面爆炸冲击数值模拟,通过对比颅内压-时间历程曲线与颅内压峰值,验证有限元模型的有效性。结果表明:在3种冲击方向下,颅内4个区域的压力峰值与文献实验仿真数据吻合较好;爆炸仿真中颅骨骨缝处有明显应力集中,骨缝线处头部有更大的损伤风险;同等爆炸冲击强度下,正面和背面冲击比侧面冲击对头部造成的损伤更严重。建立的头部模型可应用于爆炸载荷下的头部损伤研究,同时可探究骨缝对于头部生物力学响应的影响,对爆炸损伤研究具有重要意义。
摘要:
由于轻度创伤性脑损伤(mTBI)的复杂性和数据测量方式的局限性,直接根据脑组织损伤阈值来确定大脑的损伤状态往往并不可行。脑组织的损伤机制涉及复杂的力学、生物化学和生理学过程,且在不同个体之间存在显著差异。通过研究头部运动载荷与脑组织损伤之间的关系,研究者可以更好地理解不同类型的头部运动(如线加速度、角加速度、角速度)对脑组织的影响规律。这不仅有助于揭示颅脑创伤的力学机制,还为开发更有效的防护装具提供科学依据。但直接从头部的运动学测量评估损伤风险仍面临诸多挑战。本文详细总结和评述了与轻度创伤性脑损伤相关的冲击载荷及头部模型特点,通过综合分析头部运动学载荷与脑组织变形响应的关系,揭示包括线加速度、角加速度等载荷作用下脑组织的应力、应变响应规律,指出当前研究中存在的不足与局限性,为轻度创伤性脑损伤的预防、评估及治疗奠定理论和技术基础。
摘要:
为探究钢纤维增强多孔混凝土材料的水下抗爆防护效果,采用光滑粒子流体动力学与有限元耦合方法建立了“水体-炸药-防护层-钢筋混凝土板”的三维精细化仿真模型,研究了不同纤维配比钢纤维增强多孔混凝土防护层(SAP10S5、SAP10S10、SAP10S15和SAP10S20)和不同炸药质量影响下被防护钢筋混凝土板的损伤演化过程、破坏模式及失效机理,并构建了钢筋混凝土板的损伤等级预测曲线。研究结果表明:水下接触爆炸荷载下,增设钢纤维增强多孔混凝土防护层能够有效降低被防护钢筋混凝土(reinforced concrete,RC)板的损伤程度,且其对RC板损伤程度的影响随防护层中钢纤维体积分数的增加呈先减小后增大的规律,其中SAP10S15配比防护层的抗爆防护效果最优;炸药量在一定范围内增大时,SAP10S15配比防护层依然能维持较高的耗能占比,有效降低RC板的损伤程度;当炸药量为0.25 kg时,相较于无防护方案,SAP10S15配比防护层加固下RC板的损伤指数衰减最明显,为42.5%,损伤等级由严重破坏降为中度破坏。构建的损伤等级预测曲线能够直观评估钢纤维体积分数和炸药量对RC板损伤等级的影响。
摘要:
电动汽车电池包在侧面柱碰撞下极易失效并可能发生着火。为准确、快速地评估电池包在侧面柱碰撞下安全性,本文采用了区域细化的电池包模型,在不同的碰撞速度、碰撞角度、碰撞位置,车辆装载状态下开展仿真分析,采用了优化拉丁超立方采样策略设计了仿真矩阵,并通过图像识别的方法批量提取电池包碰撞响应生成数据集。对研究参数进行组合生成了新特征,并对参数进行相关性分析确定了模型训练的输入特征。采用了支持向量机(Support vector machine, SVM)、随机森林方法(random forest, RF)和误差反向传播神经网络机器学习(back propagation neural networks, BPNN)方法建立了数据驱动的预测模型。结果表明,支持向量机模型性能最优,模型预测参数的平均决定系数R2为0.96。为训练数据集引入标准差不同的高斯噪声,以对模型鲁棒性进行检验,BPNN的鲁棒性较优。建立的数据驱动模型能预测电池包侧面柱碰撞下的变形情况,评估电池包碰撞安全性。
摘要:
建立真实爆炸环境下的小型猪内耳听觉爆炸伤模型,研究不同爆炸冲击波压力对小型猪内耳听觉损伤的影响。选取14头健康小型猪,在爆炸前进行听性脑干反应(auditory brainstem response, ABR)测试。搭建自由场爆炸实验平台,使用1.9和8.0 kg TNT炸药,爆源离地面1.8 m,身体固定于防护装置中,仅暴露头部。在不同距离布放小型猪,记录冲击波峰值压力,计算即刻死亡率。爆炸后再次进行ABR测试,并取耳蜗组织进行扫描电镜观察,分析毛细胞损伤情况。在1.8~3.8 m范围内,冲击波峰值压力从96.3 kPa升至628.3 kPa,随着距离的增大,峰值压力减小。8 kg TNT爆炸在2.6 m处(峰值压力628.3 kPa)导致小型猪即刻死亡率为50%。比较爆炸前后ABR阈值发现,短声(click)和各频率短纯音(2、4和8 kHz)诱发的ABR阈值均显著升高(P<0.05),其中以4 kHz阈值变化最显著。扫描电镜显示,随着冲击波压力的升高,内毛细胞的损伤程度高于外毛细胞。爆炸冲击波可引起小型猪听觉系统的明显损伤,表现为ABR阈值升高和耳蜗毛细胞结构破坏。内毛细胞对爆炸冲击波更敏感。所建立的小型猪爆炸性听觉损伤模型可为研究爆炸伤机制和防护措施提供了重要的实验基础。
摘要:
激波管可以在实验室环境下模拟爆炸产生冲击波,具有参数易于控制和测量手段准确多样等优势,在爆炸冲击效应的研究中被广泛应用。但与真实爆炸相比,尤其是近场爆炸,激波管产生的冲击波存在正压作用时间难以缩短、超压峰值难以提升的困难。通过对激波管运行理论和数值模拟分析发现:缩短正压作用时间的关键是让反射稀疏波尽快追上入射激波;提升超压峰值的关键是提高驱动气体的驱动能力。为此,设计了一种驱动段为锥形截面的激波管,使得反射稀疏波更快地追上入射激波,从而有效减小激波管设备长度并缩短正压作用时间;同时,采用正向爆轰驱动技术,利用化学能代替高压空气驱动提高驱动气体声速,在低爆轰初始压力下可以获得高的超压峰值。数值计算结果表明,在入射激波马赫数(MS=2.0)相同条件下,相对于等截面驱动方式,采用锥形截面驱动方式时,激波管长度可以减少近2/3,正压作用时间可以缩短近1/2。激波管实验结果表明,锥形截面驱动激波管产生的超压曲线满足近场爆炸冲击波形要求,并获得了超压峰值为64.7~813.4 kPa、正压作用时间为1.7~4.8 ms的爆炸冲击波波形。该研究可为近场爆炸冲击波致伤及装备防护效应评价实验提供参考。
摘要:
锂离子电池遭受外部冲击时内部隔膜的形变和失效是引发内部短路的关键因素之一。电池电极表面通常并不平整,易造成隔膜应力集中,影响电池的机械稳定性。因此,本研究基于数值模拟和理论分析,针对电池隔膜在非平整表面压缩条件下的力学行为及其短路安全边界进行了深入探讨。选取包括一段宽度为50 μm的隔膜及其附近的正负极涂层区域作为代表性单胞进行二维有限元建模与数值计算。通过分析隔膜等效应力-应变曲线发现受到不平整表面压缩的隔膜相比于理想平面压缩表现出“软化现象”,随着加载的进行,加载面和隔膜之间的空隙逐渐被填充,非平整面和平整面压缩的载荷差异逐渐减小。通过对隔膜失效应力的参数化分析,发现随着颗粒直径的增加、隔膜厚度的减小或一定范围内的加载速率增加,隔膜表现出平均应力降低、屈服点后移等行为,短路失效应力也随之减小。进一步的,通过建立隔膜在非平整表面压缩下的等效压缩本构模型,从理论上解释了粗糙度对失效应力的影响,并推导出了二者的定量关系。
摘要:
在锂离子电池的应用中,隔膜的力学性能对电池安全性至关重要。为了系统评估隔膜在应变率和温度耦合条件下的压缩力学行为,在不同应变率和温度条件下进行了准静态和动态压缩测试,并深入分析了温度和应变率的耦合作用对隔膜力学性能的影响。结果表明,隔膜的力学行为对应变率和温度表现出显著的敏感性,在低应变率下,隔膜主要经历塑性变形,而在高应变率下则可能出现复杂的动态失效模式,温度升高导致隔膜的弹性模量和屈服应力降低。温度与应变率的耦合作用通过改变隔膜的失效模式,进一步影响其压缩强度。基于实验数据,进一步建立了考虑温度和应变率耦合效应的电池隔膜非线性黏弹性本构模型,为锂离子电池的安全设计和性能优化提供参考依据。
摘要:
采用激光选区熔化技术制备AlSi10Mg合金并对其进行了去应力退火处理,通过光学显微镜、扫描电子显微镜和电子背散射衍射技术研究了合金的微观组织。为了解AlSi10Mg合金在宽应变率和宽温度下的耦合作用对力学行为的影响,通过配有环境温箱的万能试验机和分离式霍普金森压杆分析了其在极端条件下的力学行为。结果表明:AlSi10Mg合金具有精细的胞状-枝晶微观结构,主要包含α-Al相和Si相,经退火热处理后,微观组织由断续的、呈链状分布的共晶Si颗粒构成。AlSi10Mg合金在室温应变率为0.002~4 800 s−1时,呈现出应变率强化效应,且在不同的应变率范围内具有不同的敏感性;在173 K下具有更高的屈服强度和流动应力。当温度为173~243 K时,流动应力对温度不敏感;而温度为293~573 K时,温度敏感性显著提高,合金软化效应随着温度的升高而加剧。基于实验结果拟合了修正的J-C本构模型并进行了验证,该模型可较好地反映材料在高低温和不同应变率下的力学行为。
摘要:
将36只雄性C57小鼠随机分为对照组(Sham组)、3.5 MPa bTBI组、4.5 MPa bTBI组、5.5 MPa bTBI组、4.5 MPa bTBI+生理盐水组(bTBI+SA组)、4.5 MPa bTBI+小分子多肽组(bTBI+TAT-FERM组),每组6只;将12只 Preso -/-小鼠随机分为Sham组和 4.5 MPa bTBI组,每组6只。对小鼠进行bTBI造模,完成后常规饲养2周,4.5 MPa bTBI+生理盐水组和4.5 MPa bTBI+TAT-FERM组在bTBI造模后每天通过尾静脉给药1次,连续给药5天。与对照组相比,3.5 MPa bTBI组小鼠焦虑抑郁行为改变不显著;4.5 MPa bTBI和5.5 MPa bTBI组小鼠出现PTSD样症状。与对照组相比,4.5 MPa bTBI组Preso/mGluR1复合体形成增加,使用TAT-FERM可阻断Preso与mGluR1的相互作用,可在不改变Preso/mGluR1复合体组成分子蛋白表达的情况下抑制Preso/mGluR1复合体形成,并且改善bTBI所导致的PTSD症状。bTBI促进Preso/mGluR1复合体形成是bTBI诱致PTSD症状的重要分子病理机制,通过阻断Preso与mGluR1相互作用可减轻bTBI对PTSD的影响,进而为治疗bTBI相关的PTSD提供了潜在靶点。
摘要:
为厘清放电状态对锂离子电池动态力学响应和失效模式的影响规律,系统地开展了锂离子电池在不同放电状态下的准静态压缩特性及其安全性的实验分析。通过预设电池至特定的放电电量,并在放电过程中、放电后静置1小时及24小时的时间节点上实施压缩测试,深入探究了电池的力-位移响应特性、最大承载力及安全性表现。实验结果显示,相较于其他状态,放电状态下的电池展现出较低的力-位移曲线,表明其刚度在静置之后相比于放电过程中有所提升。此外,放电状态下的电池展现出显著高于静置后状态的最大承载力,且放电过程中的压缩测试更容易电池发生爆炸,而静置后的电池则表现出显著提升的安全性。借助扫描电子显微镜分析,进一步确认了放电状态下电池内部电极颗粒的破损程度更剧烈,观测到的现象被归因于放电过程中产生的扩散诱导应力,该应力在电池内部累积,加剧了电池在机械压缩下的损伤风险。
摘要:
基于欧拉-拉格朗日耦合法(Euler-Lagrangian coupling method,CEL)建立了“火药燃气-炮管/炮弹-空气”流固耦合模型,分别对低海拔(海拔高度0 m)、中海拔(海拔高度1000 m)、亚高海拔(海拔高度3000 m)和高海拔(海拔高度5000 m)环境下大口径火炮的发射过程进行了数值模拟,研究了海拔高度对炮口冲击波动态演化过程的影响机制。模拟结果表明,大口径火炮炮口冲击波动态演化过程具有显著的方向依赖性,炮口冲击波峰值压力随海拔高度的增加而降低,峰值压力与环境压力近似呈线性关系;形成于炮口制退器处的侧向冲击波主导了操炮人员典型作业区域(炮口后方3~5 m)的冲击波超压峰值,在不同海拔条件下进行火炮射击都可致操炮人员听觉器官发生损伤,并对非听觉器官造成威胁。因此,亟需提高操炮人员个体装备防护性能,从而形成对眼、耳、肺和脑等重要器官的有效保护。
摘要:
为了研究爆炸冲击波作用下人体头部的加速度响应、建立加速度与爆炸冲击波超压的内在联系、评价基于加速度参数的头部损伤评估指标,利用标准人体参数的假人模型开展了多种TNT当量的空中静爆试验,获得了不同比例距离下模型头部的加速度时程曲线以及同距离处的自由场超压曲线。基于峰值线性加速度、头部损伤标准(head injury criterion, HIC)和头部撞击功率(head impact power, HIP)定量分析了头部损伤的风险等级,评价3种损伤评估指标在爆炸场景下的适用性和有效性。结果显示,距爆心4.2 m处的假人头部加速度随TNT当量的增加而迅速增大,TNT质量在1~4 kg范围内,正对爆心方向峰值加速度由16.29g增大至70.11g;在本次试验工况下,3种评估指标预测轻度脑损伤(mild traumatic brain injury, mTBI)风险最大依次为25%、10%和5%,其中HIP指标评估的头部轻度损伤风险偏低;当3种评估指标达到头部严重损伤阈值时,对应的峰值超压依次为0.322、0.300和0.332 MPa,其中HIC指标对应的峰值超压最低,表明其预测头部严重损伤的敏感性最强。
摘要:
底部爆炸冲击极易造成装甲车辆乘载员脊柱损伤,为全面了解底部爆炸冲击作用下的乘员脊柱各节段损伤行为和风险,通过基于高生物逼真度人体有限元模型的数值仿真模拟典型底部爆炸冲击下乘员脊柱的动态响应过程,融合运动学、动力学和生物力学响应研究脊柱各节段潜在的损伤行为,并利用生物力学指标分析不同受载工况和防护座椅设计参数下乘员脊柱的损伤风险。结果表明:C4-T3段脊柱后伸过展是棘突、横突和椎间盘纤维环的主要致伤因素,T7-T12段脊柱损伤主要受前屈过弯和轴向压缩共同作用,腰椎轴向压缩导致椎体前侧和椎间盘髓核处高损伤风险;脊柱各节段损伤风险随受载加速度峰值增大而提高,抗爆座椅防护下颈椎仍存在高骨折风险;减小座椅悬架刚度可降低乘员脊柱的损伤风险,但在0.6~1.2 kN·s/m范围内改变座椅悬架阻尼对乘员脊柱的损伤风险无明显影响。
摘要:
为更好地将湿接缝+短钢筋装配式混凝土遮弹层应用于防护工程中,首先,基于已有弹体侵彻整体式和装配式靶体的试验,利用Kong-Fang混凝土材料模型和LS-DYNA中的光滑粒子伽辽金算法建立了相应的数值模型,并得到了验证;然后,基于验证的数值模型,系统探讨了装配块尺寸、湿接缝宽度、短钢筋锚固长度、短钢筋间距和短钢筋直径对装配式靶体抗侵彻性能的影响,给出了装配式混凝土遮弹层的工程设计方法;最后,采用该方法设计了抗2种典型战斗部侵彻的装配式高性能混凝土遮弹层。数值模拟结果表明:装配块尺寸对装配式靶体的抗侵彻性能影响较小,而增加湿接缝宽度能够有效提升装配式靶体的抗侵彻性能,即湿接缝宽度越大,装配率越低,靶体整体性就越好。短钢筋是加强装配块与湿接缝连接的有效措施,与增加短钢筋直径相比,增加短钢筋锚固长度和减小短钢筋间距能更显著地提升装配式靶体的抗侵彻性能。
摘要:
为探究非纯净冰和非完整冰在冲击载荷下的动态力学特性,基于改进后的分离式霍普金森压杆实验系统,采用快速加载、杆端降温和波形整形技术,对冻结温度为−10 ℃的完整冰(纯水,含2.5%、3.5%、4.5%盐分,含2.0%、4.5%、8.5%椰丝)和拼接冰(拼接界面倾角30°、60°)进行冲击力学特性研究;利用高速摄像技术记录破坏过程,并结合Mohr-Coulomb强度准则分析拼接冰的破坏模式。结果表明:纯水冰具有最高的抗压强度,添加椰丝的冰样次之,且二者表现出相似的正应变率效应,添加盐分的冰的抗压强度最低,应变率效应也不明显。添加椰丝的冰样的动态抗压强度随椰丝含量的增加先增大后减小;由于椰丝对小粒径碎冰的联结作用,高椰丝含量的冰样的应力-应变曲线易出现“双峰”现象。拼接平面对裂纹扩展和破坏模式均有影响,拼接冰的抗压强度低于完整冰。界面倾角较小时,拼接冰破坏以界面滑移为主;倾角大时,拼接冰以整体破坏为主,与完整冰类似。
爆炸生物伤专刊简介
当前状态:  doi: 10.11883/bzycj-2024-0423
HTML全文 PDF (4)
摘要:
摘要:
基于以往的工作,首先基于头部动态测试系统与激波管和外场实弹实爆测试环境,验证了眼部装备(护目镜和风镜)的防护性能。研究结果表明,风镜防护性能更优,建议给执勤人员配发兼容防紫外、强光、烟雾和防破片功能的风镜产品,以提高相关人员眼部防护能力。此后,研究眼部爆震伤后组织损伤、功能改变及市售风镜动物实验版的防护作用与机制,为防治眼部爆震伤及风镜后续的设计改进提供理论依据。选用比格犬和C57小鼠进行相关动物实验,通过HE、Tunel、Nissl染色、视觉电生理检测等检测方法,发现随着冲击波强度的提高和伤后时间的延长,视网膜损伤程度和细胞凋亡程度均提高,其中神经节细胞层(ganglion cell layer, GCL)和视细胞内、外段(layer of photoreceptor inner/outer segments, IS/OS)受到的损伤最严重;进一步研究分子变化发现,自噬相关调节蛋白SQSTM1/p62(P < 0.0001)和LC3-II(P = 0.8437)、LC3-I(P = 0.003)的表达量明显增高,说明视网膜损伤一定程度上是由爆震伤后自噬增强这一机制导致的。市售风镜的动物实验版能够有效减轻冲击波对视网膜的损伤,保护RNFL、INL/ONL、GCL和IS/OS的结构。同时,与其他组相比,3.5 MPa组防护组与损伤组视网膜损伤和细胞凋亡程度差异最显著,推测该强度下防护风镜发挥了最大的保护作用,保护机制与防护降低视网膜细胞自噬相关。
专刊主编简介
当前状态:
HTML全文 PDF (6)
摘要:
摘要:
为探究破碎浮冰覆盖密度对结构物入水空泡演化的影响,利用高速摄影技术开展了不同破碎浮冰覆盖密度下结构物倾斜入水实验。此外,通过对比不同碎冰覆盖密度工况下的结构物倾斜入水过程,获得了碎冰覆盖密度对结构物倾斜入水空泡演化特性的影响规律。结果表明:与无冰环境相比,当空泡扩张时,破碎浮冰通过阻碍液面流体向外扩张,致使空泡的直径减小;而空泡闭合时,碎冰会阻碍液面流体向内收缩,延长空泡扩张时间,此时空泡内空气总量增加,空泡内外压差减小,最终导致空泡的闭合时间延迟。随着碎冰覆盖密度的逐渐增加,其对液面流体向内收缩的阻碍作用逐渐增强,进一步延缓了空泡的闭合时间,空泡的长度和最大直径也相应增大。碎冰覆盖密度较小的工况在空泡溃灭时会出现指向空泡内部的射流。此外,碎冰覆盖密度较大的工况下,流体的无规则冲击使得空泡壁出现褶皱。随着结构物入水深度的增加,空泡在环境压力作用下会出现深颈缩现象。随着碎冰覆盖密度的逐渐增大,结构物的水下运动速度相较于无冰环境呈现更快的衰减趋势。
摘要:
人工智能/机器学习方法能够发现数据中隐藏的物理规律,构建状态参数与动态结果之间端到端的代理模型,可高效解决强耦合、非线性、多物理等复杂工程问题。在高度非线性的爆炸与冲击动力学领域,选择了一个经典的爆轰驱动问题作为研究对象,以数值模拟结果作为机器学习代理模型的训练数据,将正向模拟与逆向设计有机结合起来,基于深度神经网络技术,构建了特征位置速度剖面、材料动态变形与工程因素之间端到端的代理模型,给出了代理模型的计算精确度,验证了代理模型从速度剖面反演工程因素的能力。结果表明:端到端代理模型具有较高的预测能力,其预测的速度剖面与工程因素估计的相对误差均小于1%,可用于高度非线性的爆炸与冲击动力学问题的快速设计、高精度预测和敏捷迭代。
摘要:
爆炸冲击伤是我国面临的重大公共卫生问题,呈现高发、群发、难防的特点,并且危重伤多,感染发生率高,诊治难度大。对爆炸冲击伤施以有效的防护胜过任何最可靠的救治。爆炸冲击伤防护是涉及医学、材料学、爆炸冲击力学等多学科的复杂问题,需要建立起爆炸冲击波传播、伤情评估、材料设计制备及材料衰减性能性能评测等方面的关系。基于此,本文从爆炸冲击波的产生、传播及爆炸冲击伤的发生机制出发,介绍了肺部、颅脑爆炸伤致伤机制,给出了不同程度的肺部、颅脑冲击伤的损伤力学指标,并系统的综述了爆炸冲击伤防护材料的研究现状及进展,讨论了不同材料的防护机理,重点针对目前广泛使用的爆炸冲击波防护材料,如多孔材料、水凝胶、聚脲等进行综述。此外,针对防护材料衰减爆炸冲击波性能评估方法不统一的问题,对材料衰减爆炸冲击波性能,如生物评估法,引线测试法等评估方法进行了全面的调研并分析各种评估方法的优缺点。最后展望了在爆炸冲击波防护性能评测,动物爆炸冲击伤伤情和材料防护性能与人员防护之间的尺度关系,材料力学指标与防护性能之间的关系等方面的发展趋势。本文以期为人员爆炸冲击伤防护材料的设计制备、应用和测试提供技术、理论参考。
摘要:
随着新型弹药和大口径重炮的大规模使用,由爆炸冲击所致非接触式杀伤模式正在快速替代原先由子弹、破片等造成的直接接触性杀伤,其杀伤威力、精度等对作战人员和装备更具威胁。本文中将从介绍爆炸冲击波典型测试环境和方法入手,通过综述爆炸冲击监测传感技术和爆炸冲击流场重构技术分析总结发展趋势,最后对国外典型便携式爆炸冲击波传感系统应用情况进行了简单介绍,为我国相关产品研发提供借鉴经验。冲击波压力传感器向着小型化、标准化、集成化和智能化研究方向发展,同时大力发展新型传感技术研究。以计算流体力学数据和实验数据为基础,在爆炸波信号处理、流场重构中引入人工智能技术;开发具有我国自主知识产权的便携式爆炸冲击检测评估系统,为极端环境下特殊行业从业人员的防护、救治提供快速分类和快速诊疗依据。
摘要:
为解决隧道拱脚周边孔爆破难成形以致超挖和掌子面底部欠挖问题,研究了马蹄形隧道拱脚周边孔爆破围岩的损伤特征。依托方山隧道,建立了拱脚周边孔的三维数值模型,模拟了拱脚处围岩的损伤情况,分析了爆破效果与自由面形状、装药量以及空孔偏转角的映射关系,并通过现场试验进行了验证。结果表明:自由面形状显著影响围岩的损伤范围和炸药的能量利用率,相较于平直自由面,凹形自由面的损伤范围小,岩石的夹制作用更大,炸药爆破难以有效破碎围岩,能量利用率仅为78%;爆破效果随着装药量的增加呈先增大后减小的趋势,当拱脚周边孔的线装药密度为0.624 kg/m时,爆破效果最佳;此外,通过布设空孔和调整空孔偏转角,可以改善拱脚周边孔的爆破效果。采用优化后的爆破参数,拱脚处最大线性超挖量降低了53.1%,隧道轮廓成型平整。
摘要:
为合理描述机械约束下炸药装药点火后的反应演化行为,深入分析壳体变形运动特征,将壳体响应变化过程分为弹塑性准静态阶段、完全屈服运动阶段和壳体破裂后惯性运动约束阶段。考虑装药燃烧裂纹网络反应演化与壳体变形运动的耦合作用,建立了反映壳体运动惯性约束效应的装药反应演化模型,通过与典型实验结果进行对比,验证了模型及参数的适应性。壳体运动速度与内部压力的变化本质表征了装药能量释放与产物气体对外做功关系,考虑壳体运动惯性约束效应可以更全面地表征装药反应演化过程,利用该模型,可以根据壳体壁面运动速度历史计算得到弹内压力、反应速率、反应度变化历史,为约束装药在意外刺激下的安全性设计与评估提供理论支撑。
摘要:
创伤后应激障碍(post-traumatic stress disorder,PTSD)源于个体经历创伤性事件后所产生的精神健康障碍,常为爆炸或冲击等外部因素所触发,特别在军事战争中其患病率异常显著,对患者及社会造成极大危害。目前对PTSD的诊断仍缺乏客观标准,对其进行筛查和定性诊断存在困难。本文总结了最新的PTSD相关遗传易感性生物标志物、神经影像学发现的大脑结构及功能改变相关的生物标志物、外周自主神经系统功能变化以及特异性外周体液生物标志物的研究进展,并探讨了这些生物标志物在临床中的潜在应用。生物标志物研究可以为理解PTSD的神经生物学机制提供关键线索,为患者提供更有效的筛查、诊断和疾病监测手段。PTSD的生物标志物的开发已经历了选择目的标志物、进行实验内部验证确定检验效能和外部验证确定标志物的可用性等阶段,目前正处于验证临床效用阶段,需要多中心、大样本量数据对候选标志物进行检测并确定其成本效益。此外,基于生物标志物与临床生理学及人口统计学风险因素的综合应用显示出潜在优势,在验证其相对于问卷调查的优越性后,基于体液蛋白组学检测所构建的多蛋白指标联合诊断模型将为PTSD的诊断提供坚实依据。
摘要:
动力锂离子电池安全是制约电动航空器运行与适航取证的技术瓶颈问题,影响全球电动航空的发展。由锂离子电池热失控引发的燃烧、爆炸等失效事件将造成机毁人亡的灾难性后果。本文旨在为相关研究人员介绍锂离子电池热失控爆炸特性的研究现状,从锂离子电池热失控燃爆行为、热失控气体爆炸极限以及热失控气体爆炸危险性评估三方面进行阐述:在锂离子电池热失控燃爆行为方面,介绍了锂离子电池热失控发展过程,分析了热失控冲击特征参数测定方法,总结了热射流演变机制及射流火焰的模拟仿真与实验方法;针对热失控气体的爆炸极限,对比国内外气体爆炸极限测试标准,总结了热失控气体爆炸极限理论计算方法,并对原位检测爆炸极限的创新方法进行了介绍;在热失控气体爆炸危险性评估方面,介绍了老化锂离子电池危险性评估方法,以及爆炸危险性参数指标。提出未来的研究将侧重于先进诊断技术、增强电解质稳定性、多尺度建模、先进抑制技术以及建立标准化测试流程和技术法规等领域。
摘要:
爆炸冲击波性脑损伤(blast-induced traumatic brain injury,bTBI)是由爆炸时的冲击波对颅脑造成的损伤效应,伤者可表现出不同程度的躯体和行为障碍以及远期认知功能损害,是战时最常见的脑损伤类型。bTBI的发生机制复杂且尚未完全阐明。爆炸发生产生的冲击波作用于头部表面并在颅内传播,造成颅脑弥漫性损伤,从病理学层面可将bTBI分为原发性损伤和继发性损伤。冲击波的机械致伤效应会造成脑内结构的原发性受损,通常不可逆,只能采取有效的预防措施减少伤害。原发性损伤可引发一系列复杂的继发性级联反应,包括突触功能障碍、兴奋性毒性损伤、血脑屏障破坏、脑膜淋巴系统功能障碍、神经炎症、线粒体功能障碍、氧化应激反应、tau蛋白过度磷酸化和淀粉样蛋白-β病理改变等,可持续至伤后数天甚至慢性阶段,为临床治疗提供了干预的时间窗。轻度bTBI临床表现异质性高,影像学表现常呈阴性,早期诊断困难。但近年来bTBI的血液生物标志物取得长足进展,包括泛素C末端水解酶L1、神经元特异性烯醇化酶、神经丝蛋白轻链、磷酸化tau蛋白、髓鞘碱性蛋白、胶质纤维酸性蛋白、S100钙结合蛋白β和神经源性外泌体等,有望成为影像学阴性的bTBI的早期诊断和预后判断的潜在生物标志物。综上,本文重点综述了近年来关于bTBI的发生机制和生物标志物研究的前沿进展,并展望了未来的研究方向,以期为探索bTBI的发生机制、早期诊断策略和干预靶点提供新思路。
摘要:
针对包含高密度、高热值元素的高熵合金材料在聚能战斗部药型罩上的应用问题,选取Ta-Hf-Nb-Zr体系高熵合金为研究对象,采用INSTRON材料试验机、分离式霍普金森压杆试验平台,探寻该高熵合金在应变率为10−3~103 s−1、温度为25~900 ℃以及应力三轴度为0.33~0.89条件下的力学响应规律,基于静动态力学性能试验结果,获取该合金的Johnson-Cook(J-C)本构方程参数及损伤失效模型参数,并建立爆炸加载下高熵合金爆炸成型弹丸(explosively formed projectile,EFP)数值模型。开展EFP成型脉冲X射线验证试验,结果显示:117 μs时,高熵合金EFP成型较为完整,EFP长度为51.1 mm,直径为12.27 mm;187 μs时,EFP尾部产生3处断裂,头部长度为24.3 mm,直径为12.27 mm,EFP速度为2496.3 m/s。模拟与试验的EFP长度、直径以及速度的误差均小于8.2%,模拟的断裂形态与试验结果基本一致,J-C模型有效预测了爆炸加载条件下高熵合金EFP的成型状态。
摘要:
听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因。强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究了不同爆炸参数对鼓膜破裂的影响规律,并建立了基于自由场超压峰值和正压持续时间的鼓膜创伤量效关系。通过笔形压力传感器测量自由场超压,通过Friedlander公式拟合超压时程曲线,确定冲击波超压峰值和正压持续时间,并对时域中记录的波形进行归一化能量频谱分析,以确定冲击波在频域上的信号能量分布。对爆炸后的小型猪进行解剖,记录不同爆炸参数下鼓膜创伤程度。以超压峰值和正压持续时间为自变量,对实验数据进行二元逻辑回归分析,并给出鼓膜破裂风险曲线。研究发现当自由场压力低于170 kPa,鼓膜无明显损伤;自由场超压峰值大于237 kPa时,部分鼓膜出现不同程度的破裂和充血。距爆心越近,超压峰值越大,但鼓膜创伤的严重程度并未随之单调增加。在8.0 kg TNT当量的爆炸实验中,鼓膜破裂的严重程度随爆心距的减小呈现先提高再降低的趋势。通过对冲击波载荷特征的分析可知,距爆心越近,正压持续时间越短,高频段能量占比相对更大,小型猪鼓膜破裂的概率可能反而降低,此时仍然出现显著的听力损失和耳蜗损伤。鼓膜作为通过振动传递声信号的黏弹性薄膜结构,其动力学响应可能和载荷频率成分密切相关。本研究认为,除了超压峰值,冲击波波形频谱分布可能对鼓膜破裂程度影响显著。
摘要:
将气相二氧化硅颗粒与聚乙二醇溶液混合制备的剪切增稠液(shear-thickening fluid, STF)填充到蜂窝芯层中,制成了STF填充蜂窝夹芯板。通过落锤冲击实验,研究了冲击速度(1.0、1.5、2.0 m/s)、蜂窝孔径(2.0、2.5、3.0 mm)和壁厚(0.04、0.06、0.08 mm)对夹芯板力学性能的影响。利用数字图像相关技术测量了结构的应变历史和后面板挠度场的分布情况,探讨了结构的低速冲击响应过程。实验结果表明,在低速冲击下,未填充STF蜂窝夹芯板的变形模式为后面板中心区域凸起变形,周围区域有明显鼓包变形;填充STF蜂窝夹芯板的变形模式为后面板凸起变形且局部凸起区域较大,周围无鼓包产生。STF的剪切增稠效应可以增加参与能量吸收的蜂窝单元,扩大结构的局部变形区域,减小结构的后面板挠度。提高冲击速度、增大蜂窝孔径或者减小壁厚,都更有利于STF的剪切增稠效应。
摘要:
混凝土介质中多点同时或彼此微差爆炸可产生复杂的地冲击波叠加聚集效应,从而使特定作用区域内的地冲击波压力显著增强,大大提升爆炸的毁伤威力。为获取多点爆源不同排布方式下爆炸聚集效应及地冲击传播衰减规律,进行了混凝土中单点和七点聚集爆炸的现场和数值模拟试验,基于正交设计方法和灰色系统理论对多点起爆参数进行了优化设计,建立了比例装药间距、比例有源装药高度和比例起爆微差等因素与不同爆心距下峰值压力间的灰色关联度系数及灰色关联度,确定了起爆参数的优选组合,并开展了数值模拟试验检验。分析结果表明:影响地冲击聚集效应的主要因素为比例装药间距,其次为比例起爆微差,最次为比例有源装药高度。在本模拟试验情况下,采用优化的起爆参数时,即在比例装药间距为0.549 m/kg1/3、比例起爆微差0.239 m/kg1/3和比例有源装药高度为0 m/kg1/3时,地冲击波聚集效应达到最佳,最大可达单点同等装药量产生的地冲击压力的4.7倍。
摘要:
为探究小能量冲击对锂电池安全的影响,通过冲击-压缩顺序加载实验对受动态荷载后未失效的软包电池二次受载时的力学响应及失效行为进行评估,结合电性能测试与内部结构损伤分析探究较弱冲击荷载下的电池性能劣化行为,并据此提出弱冲击后电池状态量化评估方法。结果表明:3、5和7 J的冲击能量下电池即使未失效,其内部机械完整性也已经受到一定损伤,再次受载时的失效位移相比新电池分别约降低18%、21%和34%;失效对应变形能分别下降40%、47%和67%,且电性能劣化现象明显,容量分别变为新电池的99.4%、93.6%和87.9%;内阻分别上升4.2%、16.2%和28.7%。二次承载能力下降和电性能劣化程度与冲击能量呈正相关。揭示了电极的冲击变形损伤与电池整体力电性能变化的联系。
摘要:
锂电池热失控造成的热冲击将损坏安装结构,对周围人员和设备安全产生威胁,是限制其航空应用的关键问题。通过自主搭建的锂电池热失控高温冲击实验平台研究发现,单节电池热冲击对电池包顶板的冲击压力高达13.23 kPa,致使其外表面温度高达274 ℃。为了有效包容锂电池热失控造成的高温冲击危害,提出电池包顶板涂敷防火涂层的被动防护方法。通过实验研究表明,环氧树脂基膨胀型防火涂层可通过膨胀有效阻隔锂电池热失控冲击压力影响,通过吸收热量降低并延缓电池包顶板的温度上升。分析锂电池热失控包容性验证实验结果可知,1.0 mm厚的E80S20涂层和E85S15B3涂层分别使电池包顶板最高温度下降52.16%和55.80%,结构最高形变分别降低72.2%和44.4%。研究表明防火涂层被动防护技术能够有效提升电池舱体对热失控高温和冲击危害的包容性,可作为航空动力锂电池系统安全性设计的有效措施。
摘要:
为提高径向冲击载荷下圆柱形锂离子电池的安全性,基于膜力因子法研究了大变形下电池的动态响应特性。将电池首先简化为包括内芯和外壳的夹层梁结构,根据抗拉屈服强度建立了电池横截面的塑性屈服准则和膜力因子,进一步将膜力因子引入运动方程实现了大变形下动态响应的求解。此外,基于拉压试验测定了电池构件的力学性能,进一步建立了电池整体有限元模型。研究表明:电池位移响应和速度响应的理论结果和有限元结果具有一致性;冲击载荷下电池初始速度越高,轴力效应对动态响应的影响越大;电池最大挠度随初始速度近似线性增加,且实际的响应时间具有饱和性;电池最大挠度随内芯和外壳屈服强度之比的减小而增大,电池外壳越薄,屈服强度的影响越显著;电池最大挠度随外壳厚度的增大而减小,屈服强度比越大,外壳厚度的影响越显著。
摘要:
基于钨纤维和金属玻璃基体的实际分布特性,建立复合材料弹体的细观有限元几何模型,采用修正的热力耦合本构模型来描述金属玻璃基体的高强度和高剪切敏感性,结合相关的斜侵彻/穿甲试验,开展复合材料长杆弹斜侵彻/穿甲钢靶的三维有限元模拟,与钨合金弹进行对比分析,讨论弹靶变形和破坏特征,分析了撞击倾角、撞击速度等因素对复合材料弹体侵彻/穿甲“自锐”行为以及弹道特征的影响。结果表明,在斜侵彻/穿甲条件下,由于弹体头部受力的非对称特征,弹头逐渐锐化为非对称的尖头构型,同时弹道偏转,复合材料弹体的“自锐”性能以及侵彻/穿甲能力下降。撞击速度对斜侵彻/穿甲条件下弹体的“自锐”特征及弹道行为有显著影响,低速撞击条件下,撞击倾角越大,弹体侵彻性能越弱;当倾角增大到50°时,撞击速度小于900 m/s的弹体均难以有效侵彻靶板;倾角进一步增大时,弹体容易跳飞。
摘要:
肺冲击伤是爆炸后第一级冲击伤最常见死因,进行有效防护是减轻伤情、提升救治效能的最优举措。聚脲材料作为躯体防具的研究尚在起步阶段,本研究通过有限元数值模拟探讨了冲击波作用下聚脲材料对肺脏的防护效应及其对冲击波的衰减特性。首先利用LS-DYNA软件模拟冲击波对穿戴防护材料的山羊胸部的直接损伤过程,然后通过实爆测压数据及肺大体伤情进行有效性验证,最后利用该冲击波防护后效应有限元计算模型完成聚脲材料对人员肺冲击伤防护效应的评估。结果表明:右肺朝向爆心时,冲击波肺损伤应力主要集中在右肺下叶,防护模型肺脏整体应力较小,肺所受负压所致肺过牵效应减弱;聚脲材料能够有效衰减到达皮肤和肺脏表面的超压峰值约58.8%(p < 0.05),降低胸骨最大线速度约22.4%,且随冲击波压强增大衰减能力增强,从而有效降低肺冲击伤的发生率和严重程度。建立的人员防护效应计算机仿真评估模型为新型防护材料用于人员肺冲击伤的防护效能评估、防护后损伤程度预测提供了方法,具有重要的军事和社会意义。
摘要:
为了提高基于罚函数法的显式有限元对大变形接触-碰撞问题仿真的精确性和健壮性,基于前增量位移时间中心差分方法,发展了一种新的大变形接触非侵入算法。将动力方程求解步分解为不考虑接触的预估步和考虑接触的修正步,在当前时刻,采用罚函数法施加接触惩罚力,使其满足非侵入条件,从而提高显式接触计算的精确性;在仅能获得下一时刻位移的情况下,为了精确计算下一时刻的大变形内力,基于任意参考构型大变形理论,将动力学方程内力项映射到已知的参考构型求解,避免使用相关物理量的中间构型近似值,从而降低由大变形计算引入的数值误差。更严格的几何非线性算法以及接触算法可有效抑制实体间的非物理穿透和大变形碰撞过程中的单元畸变,提高计算程序的健壮性。对典型碰撞及侵彻算例进行仿真,并与商业软件的结果进行对比,验证了所发展的大变形接触-碰撞显式算法的正确性,并证明了在高速大变形碰撞仿真方面,当前接触-碰撞显式算法比基于蛙跳格式中心差分和罚函数法的经典接触-碰撞算法更加健壮。
摘要:
为准确预测磷酸铁锂电池热失控产物的爆炸下限,在密闭压力容器内开展了磷酸铁锂电池热失控试验,结合热失控特性和气相色谱-质谱联用技术,计算了热失控产物气体组分,基于能量守恒方程和绝热火焰温度,建立磷酸铁锂电池热失控产物爆炸下限的预测模型,并验证了绝热火焰温度法、Le Chatelier法和Jones法的准确性,考察了电解液蒸汽对热失控产物爆炸下限的影响。结果表明,常温下Le Chatelier法计算的爆炸下限偏差最小,为1.14%,绝热火焰温度法偏差最大,为10.02%。在60%~100%荷电状态(state of charge, SOC)范围内,磷酸铁锂电池热失控气体的爆炸下限先升后降。当热失控产物考虑电解液蒸汽时,60% SOC磷酸铁锂电池热失控产物爆炸下限仅为3.93%,较未考虑电解液蒸汽热失控气体的爆炸下限降低了22.49%,这说明电解液蒸汽增加了磷酸铁锂电池热失控产物的爆炸风险。
摘要:
常用抗落石冲击被动柔性防护网防护能级和国内标准检验能级均不高于5 000 kJ,而山区桥梁等重要交通基础设施面临更高冲击能级落石灾害的威胁,采用数值模拟方法开展8 000 kJ能级被动柔性防护网的抗落石冲击分析与设计工作。首先,基于显式动力学有限元软件ANSYS/LS-DYNA对典型被动柔性防护网单环和三环环链拉伸试验、网片顶破试验以及2 000 kJ能级落石冲击足尺防护网试验进行数值模拟复现,通过与网环最大破断力、破断位移和破坏特征、落石冲击全过程以及防护网钢丝绳内力时程等试验数据对比,充分验证了所采用数值模拟方法的可靠性。进一步分析了钢柱倾角、跨距、高度以及消能装置规格等参数对落石冲击下防护网动力行为的影响。结果表明:消能装置规格是控制防护网内力与位移的关键参数;钢柱倾角建议取10°;钢柱跨距增加会减小结构的面内刚度,而对横向锚固力影响较小;钢柱高度增加会显著提升柱底支反力;钢柱高度和跨距改变需同时合理调整各钢丝绳的锚固位置。最后,通过调整防护网几何尺寸、消能装置规格和添加横向辅助支撑绳等措施给出了2种8 000 kJ能级防护网设计方案,均通过EAD 340059-00-0106标准检验。
摘要:
为深入研究深部地层中砂岩在冲击荷载作用下的动态力学特性,建立了一种改进的霍普金森压杆实验系统,对灰砂岩长杆试件开展了不同加载速率的动态压缩实验,并结合高速数字相关技术(DIC)监测试件表面位移场和应变场的演化过程,探讨了灰砂岩在近场冲击加载下的拉伸破坏的规律。从 DIC 分析得到的位移场中提取出不同质点位移时程曲线,进行了拉格朗日反分析算法计算,获得了灰砂岩材料的全场应力应变规律。结果表明:灰砂岩长杆试件以拉伸破坏为主,且出现了近加载端破碎、远离加载端层裂的现象;灰砂岩长杆试件的动态抗压强度因子随应变率增大而增大,有明显的应变率效应;随着加载速率升高,各测点应力峰值与应变峰值均呈增大趋势;在同一加载速率下,灰砂岩长杆的应力-应变曲线呈现出近端测点曲线包络远端测点曲线的现象。
摘要:
殉爆现象会影响露天矿台阶爆破作业安全、边坡稳定性和爆破效果。在炸药冲击起爆机理基础上,并结合露天矿实际富水裂隙岩体台阶爆破振动监测结果,通过对比爆破振动信号波动差异来判别殉爆现象。为研究殉爆产生的机理和防殉爆方法,采用数值模拟和现场试验分析主发药量、裂隙宽度及药包之间的距离等参数对被发药包孔壁压力的影响。结果表明:孔壁冲击压力随着装药耦合系数的减小、炮孔间裂隙宽度(0.25~1.00 cm)的增大以及炮孔间距离的减小而提高。在裂隙位置装药使用阻波管、充填岩粉或设置空气间隔器,能显著降低通过富水裂隙传递到被发炮孔的冲击压力,并使其低于乳化炸药的起爆压力临界值。当炮孔内只有单条裂隙时,选择填充岩粉是便捷且有效防殉爆方法;当炮孔内有多条裂隙时,该试验条件下,炮孔内放置厚度为2.6 mm的阻波管是最佳防殉爆方法,并能保证爆破效果。
摘要:
针对典型CL-20基高爆速压装炸药(C-1, 94.5% CL-20+5.5%助剂)的发射安全性问题,开展400 kg大型落锤试验对压装炸药C-1的冲击响应特性进行研究。同时,采用改进的应力率表征法及下限值法、特性落高法分别对该炸药的落锤冲击响应特性进行表征,并与同类压装炸药JO-8和JH-2进行了对比。得到了不同落高下3种压装炸药底部实测应力曲线及表征参数,并讨论了3种炸药撞击感度的差异及C-1炸药撞击感度的影响因素。结果表明,改进的应力率表征法对炸药撞击感度的表征具有一定有效性和普适性,与其他方法对撞击感度规律的反映具有一致性。C-1炸药的特性落高(H50)为1 m,分别为JO-8和JH-2炸药特性落高的62.50%和50.00%;C-1炸药不发生爆轰对应的后坐应力峰值(σ0)为748.90 MPa,分别为JO-8和JH-2的85.42%和64.33%;C-1的安全应力率参数(C0)为344 GPa2/s,分别为JO-8和JH-2的45.87%和39.14%。CL-20的分子结构、C-1药柱的力学性能和热-化特性是造成其撞击感度高于JO-8和JH-2撞击感度的主要因素。
摘要:
减弱中空环形聚能装药中中心侵彻体对后级结构的破坏作用,通过改变环锥罩的偏心距离和壁厚,调整了装药和药型罩的质量分布,使之形成准直环形射流,研究了炸高对环形射流侵彻威力的影响规律。数值模拟结果表明:内壳为铝合金时的中心孔平均侵彻深度较内壳为钢时的平均侵彻深度低36.13%;非偏心环锥罩形成的射流存在径向偏移,侵彻能力较弱。当环锥罩顶向外侧偏移0.05dd为环形装药厚度)时,射流准直性较好,环形射流侵彻深度较大;随着药型罩壁厚的增加,射流头部速度不断减小,当壁厚为0.045d时,偏心环锥罩形成的环形射流侵彻能力较强;环形射流侵彻深度对炸高较为敏感,在炸高为1.12d时,环形射流侵彻深度较大。针对非偏心环锥罩和偏心环锥罩两种药型罩结构开展的静破甲试验表明,环形射流侵彻深度和扩孔直径的试验结果与数值模拟结果误差小于12%,验证了数值模拟模型的可靠性。
摘要:
氢氧的高反应活性给旋转爆轰波的稳定传播带来了巨大的挑战,为研究氢氧旋转爆轰波传播不稳定性,通过改变当量比对小尺寸模型下二维氢氧旋转爆轰波进行数值模拟研究,揭示了氢氧旋转爆轰波复杂多变的传播特性,并分析了典型流场结构,探讨了传播模态的不稳定性以及爆轰波湮灭和再起爆机制。结果表明:随着当量比的提高,流场内分别呈现熄爆、单波、单双波混合3种传播模态,且爆轰波的传播速度随当量比的增大几乎呈线性提高,速度亏损为5%~8%。激波的扰动使得爆燃面失稳产生明显的扭曲和褶皱,氢氧的高反应活性让爆燃面明显分层且在2个分界面上呈现不同的不稳定性,上分界面为Kelvin-Helmholt (K-H)不稳定性,下分界面为Rayleigh-Taylor (R-T)不稳定性。单双波混合模态下爆轰波极不稳定,保持湮灭、单波、双波对撞3种状态之间循环。爆轰波有2种湮灭方式:一是双波对撞导致爆轰波湮灭,二是爆燃面燃烧加剧使得爆燃面下移导致爆轰波湮灭。再起爆的主要原因是:R-T不稳定性诱导爆轰产物与新鲜预混气在爆燃面上相互挤压产生尖峰和气泡结构,增强爆燃面上的反应放热,产生了局部热点并逐渐增强为爆轰波,实现爆燃转爆轰。
摘要:
混凝土材料被大量应用于基础设施及国防设施的建造中,为了研究高温混凝土在不同冷却方式下的动态力学特性,通过\begin{document}$\varnothing $\end{document}74 mm大口径分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)对不同冷却方式处理下不同温度的C30圆柱形混凝土试样进行动态力学性能试验,得到其在热、水、力联合作用下的力学特性。研究了冷却方式、温度和加载条件对平均应变率的影响,重点分析了高温混凝土在不同方式冷却后的动态应力-应变曲线以及冷却方式、温度及加载速率对其破碎形态、动态抗压强度、弹性模量、峰值应变及一系列动态效应的影响。结果表明:水冷时混凝土试样平均应变率受温度的影响更为明显,不同冷却方式下加载速度与平均应变率近似呈线性关系;当温度达到400 ℃及以上时,试样颜色发生明显改变,相同温度下,水冷试样比自然冷却颜色更深,出现更多细微裂纹,骨料形态破坏更严重;不同冷却方式下混凝土动态抗压强度均与加载速度呈正比,与加热温度呈反比;水冷时混凝土的弹性模量损伤系数低于自然冷却时;高温混凝土峰值应变与加热温度呈正比,与加载速度呈反比,且水冷时的峰值应变相对值要高于自然冷却时;混凝土DIF值与温度及加载速度均呈正比,且温度越高,混凝土的应变率效应越明显;当温度在200 ℃时,混凝土耗能系数出现反弹现象。
摘要:
为探究弹体斜侵彻花岗岩靶体的结构响应特性,基于30 mm弹道炮平台,开展了弹体斜侵彻花岗岩靶试验,获得了非正侵彻作用下弹体结构破坏参数。在此基础上,结合数值模拟方法研究了弹体斜侵彻花岗岩靶的弹体结构变形及断裂机制,分析了侵彻初始条件对弹体结构响应的影响规律。研究结果表明:弹体非正侵彻花岗岩靶体时,易发生弯曲和断裂;弹体头尾部所受非对称力是影响弹体响应特性的主要因素,弹体的变形破坏程度由弹体头尾部角速度差峰值大小决定;随着攻角的增大,弹体弯曲程度线性增大,攻角增大到8°时,弹体发生断裂;随着着角的增大,弹体弯曲程度先增大后减小再增大,着角为15°时,弹体弯曲程度最小,着角达到30°时,弹体发生断裂;与着角相比,攻角对弹体结构响应行为的影响更显著;攻角与着角联合作用时,着角的引入会增大弹体临界断裂正攻角,负攻角会削弱弹体抵抗弯曲变形和断裂的能力;撞击速度高于1600 m/s时,弹体撞击速度成为弹体产生不同响应行为的主控因素。
摘要:
为了研究聚脲/钢筋混凝土厚板复合结构的抗爆性能,对聚脲/钢筋混凝土厚板复合结构开展不同装药量下的接触爆炸实验,并对整体及局部的破坏特征进行分析。利用LS-DYNA有限元仿真软件研究聚脲/钢筋混凝土厚板复合结构的损伤过程及机理,并进一步分析了聚脲/钢筋混凝土厚板复合结构的破坏模式及特征。实验及有限元结果表明:接触爆炸荷载作用下的聚脲/钢筋混凝土厚板复合结构呈现6种破坏模式(正面成坑;层裂破坏;层裂鼓包;震塌破坏,聚脲涂层鼓包大变形;爆炸贯穿,聚脲涂层严重鼓包变形;贯穿和撕裂破坏);在钢筋混凝土厚板背面涂覆聚脲有效增强了复合结构的抗爆性能。研究成果可为实际应用下的聚脲/钢筋混凝土厚板复合结构抗爆设计防护提供参考依据。
摘要:
为综合评估战后建筑结构的毁伤等级,针对爆炸作用下典型地面建筑,即含填充墙钢筋混凝土(reinforced concrete,RC)框架结构,提出了损伤破坏和倒塌的高精度数值仿真分析方法,并通过RC结构爆炸试验、倒塌事故和砌体墙爆炸试验进行了充分验证;其次,开展了典型3层原型RC框架结构在不同爆炸当量(25~200 kg TNT)下的内爆炸数值仿真,定量分析了爆炸冲击波在建筑结构内部的传播、结构损伤破坏和墙体飞散等。爆炸作用下建筑结构的高效毁伤评估流程为:结合镜像爆源和非线性叠加原理确定内爆炸荷载,基于等效单自由度方法评估梁、板、柱及墙体构件的毁伤等级,引入构件重要性系数加权确定房间毁伤等级,考虑房间功能及位置重要性评估整体结构的毁伤等级。高精度数值仿真分析与毁伤评估方法计算的典型RC框架结构的整体毁伤等级一致,即在25、100和200 kg TNT爆炸下RC结构分别呈现轻度、中度和重度毁伤,毁伤评估方法可缩短99%以上的计算耗时,兼具可靠性与时效性。
摘要:
为了准确评估超高性能混凝土(ultra-high performance concrete, UHPC)遮弹层在战斗部侵彻爆炸作用下的损伤破坏并建立可靠的计算方法,首先,开展了UHPC靶体抗105 mm口径弹体侵彻和5 kg TNT炸药爆炸联合作用试验,获取了侵彻作用后以及侵彻与爆炸联合作用后弹靶的损伤破坏数据;然后,建立了UHPC靶体抗弹体侵彻与爆炸作用的有限元模型,通过对上述试验和已有的有限厚UHPC板埋置装药爆炸试验进行数值仿真分析,验证了有限元模型和分析方法的可靠性;最后,对比了SDB、WDU-43/B和BLU-109/B等3种典型原型战斗部侵彻与爆炸联合作用下,UHPC遮弹层和普通混凝土遮弹层的临界贯彻和震塌厚度。结果表明:3种战斗部侵彻爆炸联合作用下,遮弹层的临界贯穿厚度和震塌厚度范围分别为1.30~2.60 m和1.70~5.00 m,相应的临界贯穿系数和震塌系数范围分别为1.81~2.17和2.46~4.17;与普通混凝土遮弹层对比,3种战斗部侵彻爆炸联合作用下UHPC遮弹层的开坑直径减小了34.4%~42.4%,临界贯穿和震塌厚度分别降低了7.1%~31.6%和39.7%~52.8%。研究结果可为UHPC遮弹层的抗力评估和设计提供参考。
摘要:
为了反映爆轰驱动下硅橡胶发生冲击分解反应的物理过程,提出了一种简易的硅橡胶冲击分解模型。基于该模型,对爆轰驱动含硅橡胶夹层钢板实验进行了模拟,并分析解读了钢板的自由面速度。结果表明,实验中硅橡胶发生了冲击分解反应,导致钢板的自由面速度曲线出现了首次起跳中间速度平台及首次起跳速度峰值降低的现象。受硅橡胶冲击分解影响,首次入射波压力将在临界冲击分解压力附近弛豫一段时间,再继续升高至最高压力。该压力波作用于钢板的自由面后,出现了自由面速度在中间速度平台停留一段时间,之后继续升高至速度峰值的现象。硅橡胶冲击分解后的气相物质可压缩性较高,首次加载波内较多的能量被用于压缩气体做功,导致首次波传播至自由面时能量衰减、峰值压力降低,首次起跳速度峰值降低。
摘要:
高空强爆炸所产生的X射线辐照至导弹壳体结构时产生的汽化反冲冲量(blow-off impulse,BOI)及热激波,能够引起目标的动响应破坏。现有的Whitener、BBAY和MBBAY理论模型仅能给出一维近似BOI值,无法处理复杂三维情况并给出对应的热激波峰值压力p,因此对该问题的研究非常依赖数值计算。利用X射线热激波数值计算程序TSHOCK3D对矩形铝靶板在0.1~3.0 keV范围的普朗克黑体温度和220~400 J/cm2辐射能通量下的汽化反冲冲量及峰值压力进行计算,并与理论模型作了对比分析。结果表明,TSHOCK3D程序可以可靠地给出结果,正辐照靶板中心处近似一维工况下的BOI与Whitener、BBAY和MBBAY三个理论模型下的BOI基本相符。通过单变量分析可得,靶板中BOI和峰值压力p均与入射能通量呈近似线性关系;而对于不同的黑体温度,BOI和峰值压力则在1.5~2 keV处存在极大值。
摘要:
为研究饱水和初始损伤对冲击荷载下花岗岩宏观和微观破坏特征的影响,开展了X射线衍射、霍普金森和扫描电镜试验,利用分形维数对花岗岩的破碎块度和断口形貌进行了分析,探讨了图像放大倍数对分形维数的影响,分析了冲击荷载下饱水后花岗岩的微观致裂机制。结果表明:饱水后花岗岩中角闪石、钠长石、微斜长石和石英的占比减少,高岭石占比显著提高;随着初始损伤的增大,花岗岩的动态峰值应力逐渐减小,而破碎程度和块度分形维数逐渐增大,且初始损伤对块度分形维数的影响大于饱水的影响;随着初始损伤的增加,断口出现更多的微裂纹和碎屑,断口图像的分形维数也逐渐增加;放大倍数在400~3200范围内时,断口图像分形维数随着图像放大倍数的增大而增加,超过3200后,分形维数减小。
摘要:
针对飞机典型部位在遭到高速破片攻击后结构整体的战伤状态及破片的剩余行为开展数值模拟。应用LS-DYNA软件,结合有限单元方法(finite element method, FEM)和光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)两者的优势,建立自适应的FEM-SPH耦合模拟方法,并构建两种飞机典型部位的计算模型,采用六面体网格局部细化方法实现了核心位置的精确模拟,并进行试验来验证数值模型;开展了一系列高速冲击战伤模拟,对比了不同工况下破片高速冲击结构后形成的碎片云和破口形貌,并对破片的剩余速度和质量进行分析,确定了破片在结构蒙皮上的临界跳飞角。结果表明:自适应FEM-SPH耦合算法的计算结果与试验结果吻合良好,能够对破片高速冲击战伤进行有效准确模拟;碎片云分布形状随破片速度增加变得狭长,冲击角度会改变碎片云和结构破口形状朝向;碎片云高度和扩散速度随破片速度或角度的变化趋势基本一致并都呈线性关系;破片的速度减少量不随初始速度变化,质量减少量则与冲击速度成正相关,两者与冲击角度都成负相关;破片临界跳飞角与冲击速度大小基本呈线性关系。研究成果可为飞机战伤后破口预测和快速维修提供一定参考。
封面
 2024 年 11 期封面
2024, 44(11).  
PDF (23)
摘要:
目次
2024 年 11 期目次
2024, 44(11): 1-2.  
在线阅读 PDF (0)
摘要:
封面文章
摘要:
针对以中粗砂为分配层的传统成层式结构难以可靠控制作用于主体结构上荷载的缺陷,以及以泡沫混凝土为夹层的组合式防护结构抗爆机制不明等问题,开展组合式防护结构预制孔装药爆炸试验,测得特定位置处的爆炸波时程曲线和结构损伤破坏情况。并基于Kong-Fang混凝土材料模型和LS-DYNA中的光滑粒子伽辽金(smoothed particle Galerkin, SPG)算法,开展了爆炸波在组合式防护结构中传播衰减规律和损伤破坏的数值模拟研究。试验和数值模拟结果表明:组合式防护结构的抗爆机制在于遮弹层和泡沫混凝土层之间的强波阻抗失配关系,通过调控爆炸能量的分配,使得爆炸能量大部分耗散在遮弹层中,大幅减少了经泡沫混凝土层到达主体结构上的荷载和能量。
特别约稿与研究综述
摘要:
氢气在全球清洁能源转型中扮演着关键角色,但其可燃性和高爆炸危害性也使得氢气安全成为研究热点。聚焦氢气抑爆领域的最新研究成果,对不同种类抑爆材料及抑爆机理进行了综合评述。首先,介绍了气体、液体、固体以及多相复合抑爆材料的研究进展,对比分析了抑爆效果、关键参数及其变化规律。其次,探讨了抑爆材料影响氢气爆炸的物理、化学以及物理化学综合的作用过程,以揭示各类材料的抑爆机理。最后,展望了氢气抑爆材料的未来发展趋势,强调对高效能抑爆材料探索和机理研究的深化以及在实际应用中所面临的诸多挑战。
爆炸物理
摘要:
为研究气相爆轰合成碳-铁纳米材料的爆炸过程,采用氢氧爆炸试验与数值模拟相结合的方式研究了不同氢氧摩尔比(2∶1、3∶1和4∶1)对爆轰参数(爆速、爆温、爆压)峰值时程曲线与碳-铁纳米材料形貌的影响。研究表明:爆轰管内氢氧爆炸包括爆轰波的传播与燃烧波的衰减2个过程,且氢氧摩尔比对爆速、爆温、爆压的峰值时程曲线影响十分显著。随着氢氧摩尔比的提高,爆轰波的爆速、爆温、爆压及其衰减速率均呈减小趋势。氢氧摩尔比通过影响爆轰波的传播与衰减而作用于碳-铁纳米材料形貌的生长。零氧平衡时,样品为碳包铁纳米颗粒,随着氢氧摩尔比的提高,样品中碳纳米管的数量逐渐增多。调整氢氧摩尔比可实现对爆轰波传播与衰减过程的控制,达到气相爆轰控制性制备特定形貌的碳-铁纳米材料的目的。
摘要:
冲击波在水土交界面的透射、反射压力计算尚缺乏可靠的计算理论,利用质量守恒方程、动量守恒方程以及水、土的状态方程,分别推导得到冲击波在水、土介质中传播的Hugoniot关系以及p-u曲线,进而从理论上解析得到冲击波在水土交界面处的透射和反射压力。分别建立了水中自由场、水-土分层介质场的二维数值计算模型,其中水、土参数与理论推导时采用的三相介质饱和土计算模型中的参数保持一致。计算结果表明,水土交界面透射、反射压力的理论解与数值解具有高度的一致性。采用80 g TNT炸药,距离水土交界面0.1~0.9 m(比例爆距为0.232~2.089 m/kg1/3)爆炸时,得到的透射、反射压力的理论解与数值解误差均小于7%,根据解析解得出反射压力与水中入射压力之比,反射压力系数在1.6~1.8范围内;距离水土交界面0.5 m时,饱和土的含气量在0~10%范围内变化,得到的透射、反射压力的范围为63.8~70.0 MPa,此时其反射压力系数在1.55~1.70范围内。推导得出的冲击波在水土交界面透射、反射压力的计算方法,物理意义明确、计算精度高,可为开展水下爆炸对水底土中工程结构的毁伤评估提供理论基础。
摘要:
基于Kong-Fang混凝土材料模型和LS-DYNA中的多物质ALE算法,开展了CF120混凝土中带壳柱形装药爆炸波衰减规律的数值模拟研究:首先基于已有的柱形装药埋置爆炸试验,对数值算法和材料模型参数进行验证;在此基础上,通过定义长径比系数、壳厚比系数以及峰值应力耦合系数定量分析了装药形状、壳体厚度和埋深对峰值应力的影响规律;最后利用数值模拟数据拟合出混凝土中带壳柱形装药爆炸波峰值应力的计算公式。结果表明,带壳装药爆炸近区,长径比越大,峰值应力越大,远区则相反,且壳体越厚,峰值应力越大,但存在一个阈值;建立的爆炸波峰值应力计算公式可实现对不同长径比、不同壳体厚度和不同装药埋深的带壳柱形装药爆炸波峰值应力的快速预测。
冲击动力学
摘要:
珊瑚混凝土是一种拉压强度严重不对称的材料,研究其动态拉伸力学性能对岛礁防护工程具有重要意义。为了探究碳纤维(carbon fiber, CF)和不锈钢纤维(stainless steel fiber, SSF)增强珊瑚砂水泥砂浆在冲击荷载作用下的动态拉伸力学性能,采用\begin{document}$\varnothing $\end{document}100 mm的分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)装置进行动态劈裂试验,对比分析不同纤维掺量的珊瑚砂水泥砂浆在不同应变率下的动态抗拉强度和能量耗散规律,并结合扫描电子显微镜揭示混杂纤维的作用机理。结果表明:复掺CF和SSF的珊瑚砂水泥砂浆试样的静、动态抗拉强度均有显著提高,最大动态抗拉强度增长率为66.03%。在相同应变率下,试样的动态抗拉强度与纤维掺量呈正相关,其破碎程度与纤维掺量呈负相关,纤维的桥接作用对试样裂缝开展具有良好的抑制效果。在同一纤维掺量下,动态增长因子随应变率的升高明显增大,动态增长因子最大值为2.44,表现出明显的拉伸应变率效应。珊瑚砂水泥砂浆试样的破碎程度及耗散能量均与应变率呈正相关,且纤维掺量越高,试样破坏时需要耗散的能量越多。
摘要:
为了研究采用多级夹层设计的金属多级波纹芯体夹层梁在泡沫子弹冲击下的动态力学行为,在验证数值方法可靠性的基础上,通过 Abaqus-Explicit 仿真分析了不同子弹动量水平下金属多级波纹芯体夹层梁的动态变形过程、定量挠度结果、变形破坏模式和能量吸收特性。进一步地,设计了3种不同几何参数的单层波纹夹层结构,比较了单层和多级波纹夹层结构在等质量条件下的抗冲击性能差异。结果表明,多级波纹夹层梁冲击侧夹层面板的二级波纹芯体和一级波纹芯体的压溃程度始终大于背侧夹层面板二级波纹芯体的压溃程度。多级波纹夹层梁背侧面板的最终跨中挠度始终小于等质量单级波纹夹层梁的相应挠度,体现出多级夹层梁的抗冲击防护性能优势。这种增强机理主要在于增加的多孔芯体压缩吸能保护了背侧面板,另外,多级夹层梁的塑性轴向拉伸强度几乎保持不变,而塑性弯曲强度因梁结构总厚度增加而增大,从而扩大了夹层结构的塑性屈服面。
摘要:
针对工程技术领域的碰撞载荷削峰减载问题,采用数值模拟与试验相结合的方法研究了轴向串联式吸能管的吸能特性:首先基于材料高速拉伸试验,构建吸能管的材料Johnson-Cook动态本构参数,并对拟合参数有效性进行评估;随后通过数值模拟与高速冲击试验研究高速撞击过程中吸能管的缓冲吸能特性,评估仿真与试验的一致性;最终通过数值模拟对吸能管轴向串联构型与单管构型之间的吸能评价指标开展对比分析。分析研究表明:数值模拟与冲击试验的变形模式、载荷曲线、吸能评价指标均吻合较好,材料性能参数准确,仿真预示方法有效,高速冲击试验方案合理可信;与相同结构参数的串联构型吸能管相比,单管构型吸能管在压缩过程中会出现非轴对称、不稳定的扭曲变形,单管构型的有效压缩行程减小了13%,峰值载荷提高了33.4%,撞击瞬间载荷提高了15%,平均压缩力提高了13%,载荷峰均比提高了17.7%;吸能管的串联构型是更为理想的缓冲吸能结构。
摘要:
为解决高性能轻质防弹插板受轻武器杀伤元侵彻防护问题,对超高分子量聚乙烯(ultra-high molecular weight polyethylene,UHMWPE)层压薄板进行了侵彻实验,分析了侵彻后UHMWPE薄板的变形失效特征并对比了轻武器杀伤元的破坏形貌。利用有限元软件LS-DYNA建立了UHMWPE薄板抗轻武器杀伤元侵彻数值模型,通过靶板破坏形态、凹陷深度以及弹头变形的实验结果对数值模型的有效性进行了验证。在此基础上,通过数值模拟方法研究了UHMWPE薄板受弹体斜侵彻失效模式,揭示了3种轻武器杀伤元侵彻下入射角度对跳弹现象和UHMWPE薄板破坏形态的影响规律。结果表明:7.62 mm×25 mm的钢芯弹和7.62 mm×39 mm的普通弹(钢芯)斜侵彻UHMWPE薄板的跳弹角均位于45°~50°范围内;7.62 mm×25 mm的铅芯弹在入射角大于70°时才可完整跳出,其余均以破损弹片形式飞溅,弹体破坏会对跳弹状况产生影响;入射角较小时,斜侵彻子弹会产生面积较大且具有一定深度的弹坑,连续击发的下一枚子弹会更容易击穿弹坑薄弱处的纤维板,斜侵彻作用对薄板受二次侵彻产生不利影响;入射角较大时,子弹会较完整地发生跳弹并具有高剩余速度,会对人员产生二次杀伤。研究成果可为UHMWPE薄板用于轻量化军用防弹插板设计提供参考。
摘要:
为了研究反应破片对带壳装药的冲击毁伤效应,通过弹道实验和AUTODYN有限元仿真,结合由等效破片初速和等效格尼速度表征的带壳装药各失效等级判据,获得并对比了惰性破片和反应破片冲击下带壳装药的等效破片初速、等效格尼速度、带壳装药的反应持续时间、鉴证靶破坏情况和炸药层峰值压力,分析了反应破片靶后释能特点对带壳装药失效的影响。结果表明:惰性破片可使带壳装药发生正常爆轰失效;反应破片穿靶后的动能与化学能叠加效应弱,只能使带壳装药发生爆燃失效或爆炸失效,带壳装药的等效格尼速度与格尼速度的比为0.014~0.233,炸药层峰值压力为1.04~3.62 GPa。
摘要:
为探究波浪环境下带助浮装置航行体下落冲击过程中的流场以及运动演化特性,基于CFD (computational fluid dynamics) 数值模拟技术,在方法上耦合了VOF (volume of fluid) 多相流模型、k-ω SST湍流模型、Schnerr-Sauer空化模型以及Stokes五阶非线性波理论,建立了一套针对入水冲击问题的数值计算方法,并采用速度边界法进行造波。经验证,试验与数值结果在下落位移上对比差异较小,该数值方法可靠有效,且造波结果与Stokes五阶非线性波理论吻合较好。然后,基于构建的数值方法,在不同波浪环境下对带助浮装置航行体下落入水冲击过程进行了数值模拟,计算带助浮装置航行体冲击过程的位移、速度、加速度以及助浮装置受力情况,分析冲击过程中航行体的运动学参数、动力学参数以及入水空泡流场演化过程,总结了波浪环境下带助浮装置航行体的入水冲击特性。结果表明,波浪环境对下落冲击过程的影响主要体现在运动衰减段,水平方向的冲击相较于垂直方向的冲击受到波浪环境的影响要大得多,不同海况对航行体的水平冲击造成的影响主要是通过影响入水空泡的形成与溃灭过程实现的。
实验技术与数值方法
摘要:
基于电磁感应的基本原理,构建了一种由电磁力驱动产生高幅值长脉宽加速度载荷的冲击试验装置,弥补了现阶段地面冲击试验技术的缺陷。使用电磁Hopkinson杆进行了加速度冲击试验,得到了应力和加速度载荷。根据一维应力波原理,推导出细长杆中加速度与应力之间的关系式,计算结果表明试验值和理论值吻合较好,验证了试验方法的准确性。使用COMSOL有限元软件对电磁Hopkinson杆加速度冲击试验进行了数值模拟,模拟结果与试验结果一致性较好,验证了数值模型和方法的准确性。基于此有限元模型,构建了产生高幅值长脉宽加速度载荷的冲击试验装置,并对该装置进行了不同电压和电容下的数值模拟。结果表明,提出的试验装置能够产生长脉宽高幅值的加速度过载环境,且电容电压越大则加速度幅值越大,电容值越大加速度脉宽越宽。通过调控装置中的电路参数,可产生不同幅值和脉宽的加速度载荷。
应用爆炸力学
摘要:
为了提高对液化石油气( liquefied petroleum gas, LPG)的抑爆效能,采用自主设计的半开式有机玻璃管道搭建了N2/细水雾抑爆实验平台,从爆炸超压、火焰传播速度及其峰值来临时间、火焰结构等4个方面分析含改性氯化合物N2/细水雾抑爆效果。结果表明:含氯化合物对表面活性剂具有选择性,KCl、NaCl和NH4Cl与脂肪醇聚氧乙烯醚(AeO9)、有机硅表面活性剂(Sicare2235)等2种表面活性剂之间的协同增效效果更优,爆炸超压峰值、火焰传播速度峰值均明显降低,且峰值来临时间明显延长;十二烷基硫酸钠(sodium dodecyl sulfate,SDS)仅与NaCl共同作用时抑爆效果有明显提升,与其他3种氯盐共同作用时没有增效效果甚至产生促爆现象;FeCl2与表面活性剂协同时会出现爆炸增强现象;含氯化合物与表面活性剂共同作用时,复合溶液的表面张力存在最佳值,即表面张力在20 mN/m时,抑爆效能最佳。化学动力学数值模拟结果表明:含改性氯化合物N2/细水雾能够有效降低绝热火焰温度,消耗关键自由基,中断燃烧链式反应,其抑爆的协同增效机理主要体现在N2惰化稀释、表面活性剂调控水雾粒径增加冷却效应和抑制链式反应3个方面。